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Abstract. We study a natural notion of polynomial maps attached to

elements of an iterated Ore extensionA[t1;σ1, δ1][t2;σ2, δ2] · · · [tn;σn, δn].

We develop some tools to analyze these maps such as good points, mul-

tilinear transformations, and P-independence. We also present polyno-

mial maps arising in the Multivariate extensions A[t;σ, δ], introduced

by U. Mart́ınez-Peñas and F. R. Kschischang [12], through the use of

Multilinear polynomial maps.

1. Introduction and preliminaries

Polynomial maps are at the core of many areas in mathematics. For

polynomials with coefficients in a commutative ring, the evaluation is multi-

plicative, that is, the evaluation of a product of polynomials is the product

of their evaluations. In the case of polynomials with coefficients in a non-

commutative ring, it is necessary to define the left and right evaluations

and, moreover, these evaluations are no longer multiplicative. This is a

serious obstacle to a smooth development of polynomial maps in a noncom-

mutative settings. The case of polynomials in one variable with coefficients

in a division ring is manageable thanks to a nice formula for the evalua-

tion of a product. In a series of papers (see [8], [6], [9]) the case of the

evaluation of skew (Ore) polynomials in one variable with coefficients in a

division ring was studied. In these papers, an important tool is the notion

of pseudo-linear transformation, first introduced by Jacobson [5]. Our aim,

in this work, is to consider the evaluation of iterated Ore extensions. We

first introduce the definition of the evaluation for polynomials belonging to

an iterated Ore extension R = A[t1;σ1, δ1][t2;σ2, δ2] · · · [tn;σn, δn] (see also

[1]) and show that it corresponds to a factor of the ring R by an additive

subgroup of some form. The fact that we don’t divide by a left ideal causes

many problems. In particular, we don’t get (and cannot get) a product for-

mula for the evaluation. We analyze when our additive subgroup is indeed

a left ideal and introduce the notion of good points. In connection with the

evaluation of a polynomial in R at (a1, . . . , an), we introduce sequences of

pseudo-linear transformations that help to understand the situation. The
1



evaluation of elements in the ring S = K[t;σ, δ], K a division ring, of mul-

tivariate polynomials has been recently studied by U. Mart́ınez-Peñas and

F. R. Kschischang [12]. The situation is in fact very similar to the univari-

ate extension. We give the definition for polynomials with coefficients in

a ring and introduce pseudo-multilinear transformations which help to get

the product formula and various tools similar to those used in the case of a

single variable.

Let us briefly describe the content of the paper as follows. In Section 2,

we give the definition of the evaluation of skew polynomials in one variable

and recall some of their properties. In addition, in this section, we discuss

the definition of the evaluation for a polynomial belonging to an extension

of the form A[t1;σ1, δ1][t2;σ2, δ2] · · · [tn;σn, δn] (iterated Ore extension).

The pseudo-(multi)linear transformations are introduced in Section 3, and

their main properties are given. In particular, good points are defined, and

many characterizations are presented.

Section 4 is devoted to some properties of the sets of roots of polynomials

in an iterated Ore extension K[t1;σ1, δ1][t2;σ2, δ2] · · · [tn;σn, δn].
Note that in [12] the evaluation of a polynomial in A[t;σ, δ] was defined

when A = K is a division ring. In the last section, we define this evaluation

on a general ring A and use pseudo-multilinear transformations to get a

product formula.

2. Iterated Ore polynomials

Let A be a ring and σ ∈ End(A). An additive map δ : A → A is a

σ-derivation if, for any a, b ∈ A, we have δ(ab) = σ(a)δ(b) + δ(a)b.

We can then construct the Ore polynomial ring A[t;σ, δ] (introduced in

[14]) whose elements are polynomials
∑l

i=0 ait
i, where the coefficient ai be-

long to A. Addition of such polynomials is done according to the degree,

as in the case of classical polynomials, but the product is based on the

commutation law, that is, ta = σ(a)t+ δ(a), where a ∈ A.

In what follows, we will always assume that σ is injective. An easy in-

duction leads to the following formula:

∀a ∈ A, ∀n ∈ N, tna =
n∑

i=0

fni (a)t
i, (1)

where fni stands for the sum of compositions of i maps σ and n− i maps δ.

If σ = id. and δ = 0, then the Ore extension A[t;σ, δ] is the usual polyno-

mial ring. If a ∈ A and σ ∈ End(A), then we define the inner σ-derivation of

A by δa(x) = ax− σ(x)a for any x ∈ A. Let us remark that in this case, for
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any x ∈ A, we have (t−a)x = σ(x)(t−a) ∈ R = A[t;σ, δ]. This implies that

A[t;σ, δa] = A[t−a;σ]. If the base ring is commutative, then the evaluation

of usual polynomials is multiplicative; in other words, for f(x), g(x) ∈ A[x]

and a ∈ A, we have (fg)(a) = f(a)g(a). This is not true for Ore polyno-

mials, but in the case of a single variable, we have a product formula as we

shall explain in Example 2.1(4).

When A is a division ring, then A[t;σ, δ] is always left principal, and hence

admits a left Ore ring of quotients. There are strong connections between

the ring structure and more arithmetical properties of the polynomials (for

instance, invariant and semi-invariant polynomials, Wedderburn polynomi-

als, fully reducible polynomials). This shows that the evaluation of these

polynomials is very important. Evaluations are also related to factorizations

and this has played a crucial role in coding theory, refer to [2]. More recently,

evaluations of skew iterated Ore extensions have been used for “evaluation

codes”, see [1] for more details.

Let us briefly recall the definition of the evaluation of a polynomial f(t) ∈
R = A[t;σ, δ] at an element a ∈ A. We define f(a) ∈ A to be the only

element of A such that f(t) − f(a) ∈ R(t − a). This means, in particular,

that a ∈ A is a right root of f(t) when t− a is right factor of f(t). We then

introduce, for any i ≥ 0, a map Ni defined by induction as follows:

N0(a) = 1, Ni+1(a) = σ(Ni(a))a+ δ(Ni(a)).

This leads to a concrete formula for the evaluation of any polynomial f(t) =∑n
i=0 bit

i ∈ R = K[t;σ, δ] at an element a ∈ A as follows:

f(a) =
n∑

i=0

biNi(a).

Before defining the evaluation of iterated polynomials, we now provide a

few classical examples.

Examples 2.1.

(1) R = C[t;−], the commutation rule is here t(a + ib) = (a − ib)t, where

a, b ∈ R. An element a ∈ C is a (right) root of t2 + 1 if N2(a) + 1 = 0, i.e.,

aa+ 1 = 0. From this, it is clear that t2 + 1 is an irreducible polynomial in

R. On the other hand, it is easy to check that t2+1 is a central polynomial

and we get the quotient R/(t2 + 1) is isomorphic to the quaternion algebra

H. Furthermore, the roots of the polynomial t2 +1 are exactly the complex

numbers of norm 1.

(2) Another important kind of Ore extensions is obtained by presenting the

Weyl algebra A1 = k[X][Y ; id., d
dx ], where k is a field. The commutation
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rule that comes up is thus Y X = XY + 1. In characteristic zero, this

algebra is simple (it doesn’t have any two-sided ideal except 0 and A1).

If char(k) = p > 0, then A1 is a p2 dimensional algebra over its center

k[Xp, Y p]. Evaluating powers of Y atX we get for instance Y 2(X) = X2+1,

Y 3(X) = X3 + 3X, and Y 4(X) = X4 + 6X2 + 3.

We can iterate the procedure and get the Weyl algebra An(k).

(3) In coding theory, Ore extensions of the form Fq[t; θ], where q = pn and

θ is the Frobenius automorphism defined by θ(a) = ap, for a ∈ Fq, have

been extensively used (cf. [2]). In [10], both the evaluation and the factor-

ization for these extensions were described in terms of classical (untwisted)

evaluation of polynomials. General Ore extensions have also been used to

construct codes, see [3].

(4) Let us recall the useful formula for the evaluation of the product of two

polynomials f(t), g(t) ∈ R = A[t;σ, δ] in the case A = K is a division ring:

(fg)(a) = 0 if g(a) = 0 and (fg)(a) = f(ag(a))g(a) if g(a) ̸= 0,

where for 0 ̸= c ∈ K, we have ac = σ(c)ac−1+ δ(c)c−1. We write ∆σ,δ(a) :=

{ac | c ∈ U(A)}, where U(A) denotes the set of invertible elements of A.

Remarks 2.2. (a) We have defined Ni(a) for i ∈ N and a an element of

a ring A. These could be called the (σ, δ)-powers of a ∈ A. Any question

concerning the powers of elements in a ring has an analog in the (σ, δ)-

setting.

(b) The product formula has been mentioned in the last example is also

available when A is a ring via the use of (σ, δ)-pseudo-linear transformations.

They will be introduced later.

In what follows, we consider an iterated Ore extension

R = A[t1;σ1, δ1][t2;σ2, δ2] · · · [tn;σn, δn].

We will always assume that, for any 1 ≤ i ≤ n, we have σi(A) ⊆ A and

δi(A) ⊆ A. It will be convenient to have notations for intermediate Ore

extensions. For this purpose, we put R0 = A, and, for i ∈ {1, . . . , n − 1},
Ri = Ri−1[ti;σi, δi]. Notice that Rn = R. For f ∈ R and (a1, . . . , an) ∈ An,

our aim is to define the value of f(a1, a2, · · · , an).
Suppose that (a1, a2, · · · , an) ∈ An and consider a polynomial

f0 = f(t1, . . . , tn) ∈ R = Rn−1[tn;σn, δn].

We can define f1 = f(t1, . . . , tn−1, an) ∈ Rn−1 as the remainder of the

division of f0 on the right by tn − an. This is

f0 = q(t1, . . . , tn)(tn − an) + f1.
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By the same procedure, we divide f1 = f(t1, . . . , tn−1, an) by tn−1 − an−1

and get the remainder f2 = f(t1, . . . , tn−2, an−1, an) ∈ Rn−2. This is

f1 = f(t1, . . . , tn−1, an) = q2(t1, t2, . . . , tn−1)(tn−1 − an−1) + f2.

Continuing this process, we define f3 ∈ Rn−3, . . . , fn−1 ∈ R1, fn ∈ R0 = A.

The evaluation of f(t) at (a1, . . . , an) is fn ∈ A. We also remark that for

any 0 ≤ i ≤ n− 1, we have fi − fi+1 ∈ Rn−i(tn−i − an−i).

This leads us to the following definition.

Definition 2.3. For f(t1, . . . , tn) ∈ R = A[t1;σ1, δ1][t2;σ2, δ2] · · · [tn;σn, δn]
and (a1, . . . , an) ∈ An, we define the evaluation of f(t1, t2, . . . , tn) at a

point (a1, . . . , an), denoted by f(a1, . . . , an), as the representative in A of

f(t1, t2, . . . , tn) modulo

In(a1, . . . , an) = R1(t1 − a1) + · · ·+Rn−1(tn−1 − an−1) +R(tn − an),

where, for each 1 ≤ i ≤ n, Ri stands for Ri = A[t1;σ1, δ1] · · · [ti;σi, δi].

The above discussion shows that for any polynomial f(t) ∈ R there exists

an element c ∈ A such that f(t)− c ∈ In. Notice that In = In(a1, . . . , an) is

an additive subgroup of (R,+) and is not, in general, a left ideal in R = Rn.

We will consider and characterize those points for which In is indeed a left

ideal of R, see below.

Another way to compute the evaluation is to note that the polynomi-

als in R = A[t1;σ1, δ1][t2;σ2, δ2] · · · [tn;σn, δn] can be written in a unique

way as sums of monomials of the form αl1,...,lnt
l1
1 t

l2
2 · · · tlnn , for some 0 ≤

l1, l2, . . . , ln ≤ n and αl1,...,ln ∈ A. The sum
∑n

i=1 li is called the degree

of the monomial and the degree of a polynomial is given by the degree

of the monomials with a higher degree. First remark that if a monomial

m = m(t1, . . . , tn) is of degree l, then for any a ∈ A∗, ma is a polynomial

of degree l as well. We define the evaluation by induction on the degree. In

practice, it is sufficient to define the evaluation of a monomial.

For (a1, a2, . . . , an) ∈ An and m = m(t1, . . . , tn), we define m(a1, . . . , an)

as follows:

If deg(m) = 1 and m = αti for some 1 ≤ i ≤ n and α ∈ A, then

m(a1, . . . , an) = αai. So, assume that the evaluation of the monomials

of degree < l has been defined and consider a monomial m = m(t) such

that deg(m) = l ≥ 1 and m = m′(t1, . . . , tj)tj for some 1 ≤ j ≤ n, then

m(a1, . . . , an) = m′′(a1, . . . , aj) such that the polynomial m′′(t1, . . . , tj) =

m′(t1, . . . , tj)aj is of the degree smaller than l.

We are now going to make some remarks about this evaluation.
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Remark 2.1. (1) First let us notice that, before we evaluate a polyno-

mial, we must write it with the variables appearing in the precise

order t1, t2, . . . , tn (from left to right). In other words, before eval-

uating a polynomial we must write it as a sum of monomials of the

form tl11 t
l2
2 · · · tlnn .

(2) Of course, this is not the only possible definition, but although it

might look a bit strange, it is still natural if we want the zeros being

right roots. Let us look more closely at the case of two variables. In

other words, it is natural for (a1, a2) to annihilate a polynomial of

the form g(t1)(t2 − a2); but we don’t necessarily expect (a1, a2) to

be a zero of a polynomial of the form (t1 − a1)h(t1).

(3) Since the base ring is not assumed to be commutative, we must be

very cautious while evaluating a polynomial, even when the variables

commute. With this definition, t1t2 ∈ A[t1, t2] evaluated at (a, b)

gives (t1t2)(a, b) = ba. This might look very strange, but if we think

of evaluation in terms of ”operators” via the right multiplication

by b followed by the right multiplication by a this evaluation looks

perfectly fine and the apparent awkwardness disappears.

(4) We assume that the different endomorphisms σi’s are such that

σi(A) ⊆ A. In other words, for i > 1, σi is an extension of σi|K
to Ri−1. Some commutation relations exist between the different

endomorphisms σi. For instance, consider the polynomial ring ex-

tension R = A[t1;σ1][t2;σ2]. If we put σ2(t1) =
∑l

i=0 ait
i
1 computing

σ2(σ1(a)t1) = σ2(t1a) = σ2(t1)σ2(a), leads to the following equations

∀ 0 ≤ i ≤ l, aiσ
i
1(σ2(a)) = σ2(σ1(a))ai.

Let us now give some examples.

Examples 2.4. (1) Let A1(k) = k[X][Y ; id., d
dX ] and (a, b) ∈ k2. Then

• Y X = XY +1 = X(Y −b)+bX+1 = X(Y −b)+b(X−a)+ba+1,

and hence (Y X)(a, b) = ba+ 1.

• Y X2 = X2Y + 2X = X2(Y − b) + bX2 + 2X = X2(Y − b) +

bX(X − a) + baX + 2(X − a) + 2a, and hence (Y X2)(a, b) =

ba2 + 2a.

• Y 2X = XY 2+2Y = XY (Y −b)+bX(Y −b)+bXb+2(Y −b)+2b,

and therefore (Y 2X)(a, b) = b2a+ 2b.

(2) Consider the double Ore extension R = Fq[t1; θ][t2; θ], where q = pn,

θ(a) = ap, and θ(t1) = t1. A polynomial p(t1, t2) ∈ R can be written

as p(t1, t2) =
∑n

i=0 pi(t1)t
i
2 =

∑
i,j ai,jt

j
1t

i
2, and we can easily check
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that

p(t1, t2)(a, b) =
∑
i,j

θj(Ni(b))Nj(a) = b
(pi−1)pj

p−1 a
pi−1
p−1 .

(3) Consider the polynomial ring R = K[t1;σ1, δ1][t2;σ2, δ2], and let us

evaluate the polynomials t1t2 and t2t1 at (a1, a2) ∈ K2. So, we want

to compare (t1t2)(a1, a2) and (t2t1)(a1, a2).

• We have t1t2 = t1(t2−a2)+t1a2 = t1(t2−a2)+σ1(a2)t1+δ1(a2).
This leads to (t1t2)(a1, a2) = σ1(a2)a1 + δ1(a2).

• (t2t1)(a1, a2) = (σ2(t1)t2 + δ2(t1))(a1, a2) = σ2(a1)a2 + δ2(a1).

(4) Let us compute (t1t2t3)(a1, a2, a3) and (t3t2t1)(a1, a2, a3).

• We have t1t2t3 = t1t2(t3−a3)+t1t2a3 = t1t2(t3−a3)+t1(σ2(a3)t2
+δ2(a3)) = t1t2(t3−a3)+ t1σ2(a3)t2+ t1δ2(a3) = t1t2(t3−a3)+
σ1(σ2(a3))t1t2 + σ1(δ2(a3))t1 + δ1(δ2(a3)). This leads to

(t1t2t3)(a1, a2, a3) = σ1(σ2(a3))a1a2+σ1(δ2(a3))a1+δ1(δ2(a3)).

• t3t2t1 = t3(σ2(t1)t2 + δ2(t1)) = t3(σ2(t1)t2) + t3δ2(t1) =

σ3(σ2(t1)t2)t3 + σ3(δ2(t1)) + δ3(δ2(t1)). We thus get

t3t2t1(a1, a2, a3) = σ3(σ2(a1)a2)a3 + σ3(δ2(a1)) + δ3(δ2(a1)).

(5) Monomials in a single variable can be evaluated in the classical ways

(as has been stated at the beginning of this section). Hence, let us

introduce the following notation. For 1 ≤ i ≤ n, j ∈ N, and x ∈ A,

we put

Ni,j(x) = (tji )(x).

Of course, this is just the usual evaluation in A[ti;σi, δi]. As in (1)

above we can introduce, for any 1 ≤ i ≤ l, the maps f lk,i from A to

A as being the sum of all monomials with i maps σk and l− i maps

δk. We can then evaluate monomials over a general ring A. To see

an example, we compute the case in which n = 2 the evaluation of

ti1t
j
2 at (a1, a2). We thus compute modulo R1(t1 − a1) +R2(t2 − a2)

and get successively:

ti1t
j
2 ≡ ti1N2,j(a2) ≡

∑
l

f i1,l(N2,j(a2))t
l
1 ≡

∑
l

f i1,l(N2,j(a2))N1,l(a1).

3. Pseudo-linear transformations

The pseudo-linear transformations were introduced by Jacobson (cf. [5]).

They are the analog of the usual linear transformations of vector spaces and

many of the classical results of linear algebra have their analog for pseudo-

linear transformations, see [10]. In the case of one variable, the pseudo-

linear transformations are fundamental since, as we will see, they allow us
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to describe the left R = K[t;σ; δ] modules, they give a way to evaluate the

polynomials, they provide a product formula, and they lead to vector spaces

in the set of roots of a polynomial, and that finally gives a bound on “the

number of roots”.

If V is a left module over R := A[t;σ, δ], then V is a left A-module, and

the variable t acts on the left of V . We thus have

t.(αv) = (tα).v = (σ(α)t+ δ(α)).v = σ(α)t.v + δ(α)v.

Of course, left multiplication by t on V is additive. This justifies the follow-

ing definition.

Definitions 3.1. Let V be a left A-module and σ and δ be respectively an

endomorphism and a σ-derivation of A. An additive map T : V → V such

that, for all α ∈ A and v ∈ V , we have T (αv) = σ(α)T (v) + δ(α)v is called

a (σ, δ)-pseudo-linear map.

We have seen that whenever V is an A[t;σ, δ]-left module, the action of t

on V gives rise to a (σ, δ)-pseudo-linear map on AV . Conversely, if AV is a

left A-module, and T : V −→ V is a (σ, δ)-pseudo-linear map defined on V ,

then V can be given a left A[t;σ, δ]-module structure by defining t.v = T (v)

for any v ∈ V . This leads to a one-to-one correspondence between the

set of A-modules V equipped with a (σ, δ)-pseudo-linear map and A[t;σ, δ]-

left module. For more details on pseudo-linear maps, we refer the reader

to [5], [10], and [6]. If a ∈ A, then the map Ta : A → A defined by

Ta(x) = σ(x)a + δ(x) is a (σ, δ)-pseudo-linear transformation on A. Notice

that for a = 0, we have T0 = δ. Coming back to a general (σ, δ)-PLT on A,

it is easy to check that if T is a (σ, δ)-PLT defined on AV , we have for any

a ∈ A, n ∈ N, and v ∈ V

Tn(av) =
n∑

i=0

fni (a)T
i(v),

where fni is the sum of all the words in i letters σ and n − i letters δ.

Comparing this last equation with the one given in (1) (see Section 1) leads

to the following ring homomorphism:

φ : R = A[t;σ, δ] → End(V,+) given by φ(
n∑

i=0

ait
i) =

n∑
i=0

LaiT
i,

where, for each a ∈ A, La stands for the left multiplication by a, i.e., La(v) =

av, for any a ∈ A and v ∈ V . The details can be found in the papers that

have been mentioned above. The (σ, δ)-PLT Ta defined above allows us to
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translate the evaluation, as follows:

P (a) = P (Ta)(1).

Using the fact that the map φ is a ring homomorphism, we easily get the

product formula for Ore polynomial with coefficients in a ring. This easily

leads to (f(t)g(t))(a) = f(Ta)(g(a)).

This can be viewed as a general product formula also valid for an Ore

extension based on a ring A that is not a division ring. The (σ, δ)-PLT is

also connected with roots of a polynomial inside a given (σ, δ)-conjugacy

class. We start by considering a special case of the product formula when

g(t) = x ∈ A. We then get (f(t)x)(a) = f(Ta)(x), and hence

Kerf(Ta) = {x ∈ A | (f(t)x)(a) = 0}.

We also introduce the following subring of A

Cσ,δ(a) = {b ∈ A | Ta(b) = ab}.

We compute Ta(xb) = σ(xb)a + δ(xb) = σ(x)(σ(b)a + δ(b)) + δ(x)b =

σ(x)Ta(b) + δ(x)b = σ(x)ab + δ(x)b = Ta(x)b, and conclude that Ta is a

right Cσ,δ(a)-morphism. Therefore, for f(t) ∈ R = A[t;σ, δ] and a ∈ A,

the kernel Kerf(Ta) is a right Cσ,δ(a)-module. When A = K is a division

ring, the subring Cσ,δ(a) is a division ring (isomorphic to EndR(R/R(t−a)))
and the right roots of a polynomial belong to a finite number of conjugacy

classes, say {∆σ,δ(a1), . . . ,∆
σ,δ(an)}. Denoting Ci as the class Cσ,δ(ai), we

obtain ∑
dimCi(Ker(f(Ti))) ≤ deg(f).

We now consider an iterated extension A[t1;σ1, δ1][t2;σ2, δ2] · · · [tn;σn, δn].
We will always assume that, for any 1 ≤ i ≤ n, σi(A) ⊆ A and δi(A) ⊆ A.

First, we introduce some notations as follows:

R0 = A = S0 and for 1 ≤ i ≤ n, we put Si = A[ti;σi, δi] and define

R1 = A[t1;σ1, δ1],

R2 = R1[t2;σ2, δ2] = A[t1;σ1, δ1][t2;σ2, δ2],

R3 = R2[t3;σ3, δ3] = A[t1;σ1, δ1][t2;σ2, δ2][t3;σ3, δ3], and finally

R = Rn = Rn−1[tn;σn, δn] = A[t1;σ1, δ1][t2;σ2, δ2] · · · [tn;σn, δn]. We also

define, for 1 ≤ i < j ≤ n, pi,j = σj(ti) ∈ Rj−1 and qi,j = δj(ti) ∈ Rj−1.

The following proposition is the analog of a classical result in the case of

a single variable Ore extension (cf. [6]).

Proposition 3.2. Let A be a ring and, for each 1 ≤ i ≤ n, let (σi, δi) be

endomorphisms and σi-derivations on A, and

R = A[t1;σ1, δ1][t2;σ2, δ2] · · · [tn;σn, δn].
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Let also AV be a left A-module. Then the following statements are equiva-

lent:

(i) AV has a left R-module structure.

(ii) For each 1 ≤ i ≤ n, V is a left Ri-module structure.

(iii) For each 1 ≤ i ≤ n, the left multiplication by ti is a (σi, δi)-PLT on

V considered as a left Ri−1 module.

(iv) There exists a subset {T1, . . . , Tn} ⊂ End(V,+) such that for each

1 ≤ i ≤ n, Ti is a (σi, δi)-PLT on RiV such that for all 1 ≤ i < j ≤ n,

we have Tj ◦ Ti = pi,j(T1, . . . , Tj−1)Tj + qi,j(T1, . . . , Tj−1).

Proof. (i) ⇒ (ii) This is straightforward since Ri is a subring of R = Rn.

(ii) ⇒ (iii) The proof goes by induction on i ≥ 1.

(iii) ⇒ (iv) The maps Ti are given by the left multiplication by ti. We

prove the equality given in (iv) for j = 2 and v ∈ V .

We have (T2◦T1)(v) = T2(t1.v) = σ2(t1).T2(v)+δ2(t1).v = p12(t1).T2(v)+

q1,2(t1).v = p1,2(T1)(T2(v)) + q1,2(T1)(v) = (p1,2(T1) ◦ T2)(v) + q1,2(T1)(v).

This proves the formula for j = 2. The general case is similar.

(iv)⇒ (i) The left R = Rn module structure on V is given via ti.v = Ti(v).

The equality given in (iv) will insure that the successive action of ti and tj
are compatible with the product in R. □

With the notations of the above proposition, we get the following corol-

lary.

Corollary 3.3. The map φ : R→ End(V,+) defined by

φ(
∑

ai1,...,int
i1
1 t

i2
2 · · · tinn ) =

∑
Lai1,...,in

T i1
1 ◦ T i2

2 ◦ · · · ◦ T in
n ,

is a ring homomorphism.

Proof. First, note that we have the following equalities

φ(tia) = φ(σi(a)ti + δi(a)) = Lσi(a) ◦ Ti + Lδi(a) = Ti ◦ La = φ(ti) ◦ φ(La).

We leave it to the reader to check that φ(titj) = φ(ti) ◦ φ(tj). □

Remark 3.4. Having a sequence T1, . . . , Tn such that Ti is a (σi, δi)-PLT

on a left A-module V , we get a left structure of Si = A[t;σi, δi]-module on

V . This is of course not enough to get a structure of left R-module on V . In

fact, what is needed is to have an “increasing” sequence of structures defined

on V as follows: T1 on AV leads to a left R1-structure on V , T2 defined on

R1V leads to a left R2 structure on V , T3 defined on R2V leads to a left

R3 structure on V , and so on. This will be of particular importance while

considering a sequence of elements (a1, . . . , an) ∈ An and their associated

PLT defined on V = A via Ti(x) = σi(x)ai + δi(x) for all x ∈ A.
10



We continue our argument with the following definition.

Definition 3.5. Let A a ring, R = A[t1;σ1, δ1][t2;σ2, δ2] · · · [tn;σn, δn] be an

iterated Ore extension, AV a left A-module, and (T1, . . . , Tn) be a sequence of

maps in End(V,+) such that for each 1 ≤ i ≤ n, Ti is a (σi, δi)-PLT of AV .

This sequence (T1, . . . , Tn) is called good if (AV, T1) gives a R1V structure

on V , and T2 is a (σ2, δ2)-PLT on R1V so that (R1V, T2) defines an R2V

structure on V and inductively, for any 1 ≤ i < n, Ti+1 is a (σi, δi)-PLT on

RiV -structure which leads to an Ri+1 module structure on V .

Example 3.6. For our purpose, one of the most important examples of

sequences of PLT comes from the evaluation maps. Let a = (a1, . . . , an) ∈
An and consider the following iterated Ore extension

R = A[t1;σ1, δ1][t2;σ2, δ2] · · · [tn;σn, δn].

For 1 ≤ i ≤ n, we define the map Ti : A→ A given by Ti(x) = σi(x)ai+δi(x)

for all x ∈ K. This sequence of PLT’s defined on K corresponds to a left

R-module structure on K. This R-module structure is closely related to

evaluation at a. The point of the next theorem is to study this connection.

Theorem 3.7. Let A be a ring and R = A[t1;σ1, δ1][t2;σ2, δ2] · · · [tn;σn, δn]
an iterated Ore extension on A. For a = (a1, . . . , an) ∈ An, we let Ti = Tai
be the PLT on A defined in the above example and f = f(t1, . . . , tn) ∈ R.

Then the following statements hold.

(1) For any x ∈ A, we have (fx)(a1, . . . , an) = f(Ta1 , . . . , Tan)(x).

(2) We have f(a1, . . . , an) = f(Ta1 , . . . , Tan)(1).

(3) For any x ∈ U(A), we have

f(Ta1 , . . . , Tan)(x) = (fx)(a1, . . . , an) = f(ax1 , . . . , a
x
n)x,

where for each i ∈ {1, . . . , n}, axi = σi(x)aix
−1 + δi(x)x

−1.

Proof. (1) It is enough to consider the case in which f = m = tl11 t
l2
2 · · · tlnn is

a monomial. We then use induction on the length of the monomial. So, if

m = ti, for some 1 ≤ i ≤ n, then we have the following equalities

(tix)(a1, . . . , an) = (σi(x)ti + δi(x))(a1, . . . , an) = σi(x)ai + δi(x) = Tai(x),

for any x ∈ A, and hence the formula is verified. Now, assume that

m(t1, . . . , tn) = m′(t1, . . . , ti)ti for some m′ ∈ R and i ∈ {1, . . . , n} and

also the equality holds for m′. Notice that m′ ∈ Ri. We then compute

modulo In = R1(t1 − a1) + · · ·+Rn(tn − an) and deduce that

mx+ In = m′tix+ In = m′(σi(x)ti + δi(x)) + In.
11



As m′ ∈ Ri and Ri(ti− ai) ⊆ In, we get mx+ In = m′(σi(x)ai+ δi(x))+ In.

Our induction hypothesis then implies that

mx+ In = m′(Ta1 , . . . , Tan)(σi(x)ai + δi(x)) + In.

Hence, we conclude that (mx)(a1, . . . , an) = m′(Ta1 , . . . , Tan)(σi(x)ai+δi(x))

= m′(Ta1 , . . . , Tan)(Tai(x)) = m(Ta1 , . . . , Tan)(x). This finishes the induc-

tion and yields the result.

(2) This is obtained by choosing x = 1 in statement (1) of this theorem.

(3) The first equality is just the equation (1) above. We have

f +
∑
i

Ri(ti − axi ) = f(ax1 , . . . , a
x
n) +

∑
i

Ri(ti − axi ),

and right multiplying by x, this gives that

fx+
∑
i

Ri(ti − axi )x = f(ax1 , . . . , a
x
n)x+

∑
i

Ri(ti − axi )x.

We then remark that (ti−axi )x = σi(x)(ti−ai) and get the following equality

fx+
∑
i

Ri(ti − ai) = f(ax1 , . . . , a
x
n)x+

∑
i

Ri(ti − ai).

This shows our claim. □

Example 3.8. The statement (3) above can be used to obtain a closed

formula for the evaluation of f(t1, . . . , tn) =
∑
αl1,...,lnt

l1
1 t

l2
2 · · · tlnn at the

point (a1, . . . , an) ∈ Kn. For instance, in the case in which n = 2 and

(a, b) ∈ K2, we consider the evaluation of f(t1, t2) =
∑l1,l2

i=0,j=0 ai,jt
i
1t

j
2 at

(a, b) and, assuming xj := Nσ2,δ2
j (b) ̸= 0 for 0 ≤ j ≤ l2, we deduce that

f(a, b) =
∑
i,j

ai,jN
σ1,δ1
i (axj )xj .

Let us now turn to another possible way of evaluating a polynomial

f(t1, . . . , tn) ∈ R = A[t1;σ1, δ1][t2;σ2, δ2] · · · [tn;σn, δn] at (a1, a2, . . . , an) ∈
Kn. We consider the element of K representing f in the quotient R/I,

where I = R(t − a1) + R(t − a2) + · · · + R(t − an). The set I is the

usual left ideal of R and this evaluation looks more classical. Unfortu-

nately, in general, for a sequence (a1, . . . , an) ∈ An it arises frequently that

I = R and this new evaluation is then not a good one. We say that a

point (a1, . . . , an) ∈ An is good if we have In =
∑n

i=1Ri−1[ti;σi, δi] = I.

The next proposition will compare the two evaluations by comparing In =

R1(t1 − a1) + · · ·+Rn−1(tn−1 − an−1) +R(tn − an) and I. It will show that

a point (a1, . . . , an) ∈ An is good if and only if the sequence (Ta1 , . . . , Tan)

is a good sequence.
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Theorem 3.9. Let A be a ring and R = A[t1;σ1, δ1][t2;σ2, δ2] · · · [tn;σn, δn].
We consider (a1, a2, . . . , an) ∈ An and put

I = R(t1 − a1) +R(t2 − a2) + · · ·+R(tn − an),

and

In = R1(t1 − a1) + · · ·+Rn−1(tn−1 − an−1) +R(tn − an),

where, for each 1 ≤ i ≤ n, Ri = A[t1;σ1, δ1] · · · [ti;σi, δi]. With these nota-

tions, the following statements are equivalent:

(1) In = I;

(2) R(ti − ai) ⊆ In;

(3) I ̸= R;

(4) For 1 ≤ i < j ≤ n, we have tj(ti − ai) ∈ In;

(5) For 1 ≤ i < j ≤ n, we have σj(ti − ai)aj + δj(ti − ai) ∈ In;

(6) For 1 ≤ i < j ≤ n, we have (tjti)(a1, . . . , an) = σj(ai)aj + δj(ai);

(7) For all f, g ∈ R, we have

(fg)(a1, a2, . . . , an) = (f(Ta1 , Ta2 , . . . , Tan) ◦ g(Ta1 , Ta2 , . . . , Tan))(1);

(8) The sequence (Ta1 , Ta2 , . . . , Tan) of PLT on A is good;

(9) The map ψ : R = A[t1;σ1, δ1][t2;σ2, δ2] · · · [tn;σn, δn] −→ End(A,+)

defined by ψ(f(t1, . . . , tn)) = f(Ta1 , . . . , Tan) is a ring homomor-

phism.

Proof. (1) ⇔ (2) is straightforward.

(2) ⇒ (3) If I = R, then In = R and, for 1 ≤ i ≤ n, there exist polynomials

gi(t1, t2, . . . , ti) ∈ Ri such that 1 =
∑n

i=1 gi(t1, . . . , ti)(ti − ai). The change

of variables defined by putting yi = ti − ai gives that, for some hi ∈ Ri, we

have 1 =
∑n

i=1 hi(y1, . . . , yi)yi. A comparison of the coefficients of degree

zero of this equality, leads to a contradiction.

(3) ⇒ (4) There exists c ∈ A such that tj(ti − ai) − c ∈ In ⊆ I. Since

tj(ti − ai) ∈ I, we obtain c ∈ I; hence, by (3), we must have c = 0. This

shows that tj(ti − ai) ∈ In.

(4) ⇒ (5) It follows from tj(ti − ai) ∈ In that σj(ti − ai)tj + δj(ti − ai) ∈ In.

Since (tj − aj) ∈ In, we obtain σj(ti − ai)aj + δj(ti − ai) ∈ In.

(5) ⇒ (6) This is clear since (5) implies that

tjti − σj(ai)aj − δj(ai) = σj(ti)tj + δj(ti)− σj(ai)aj − δj(ai) ∈ In.

(6) ⇒ (1) The equality in (6) yields that tjti − σj(ai)aj − δj(ai) ∈ In for

1 ≤ i < j ≤ n. This gives that tj(ti − ai) ∈ In. On account of we also

have Ri(ti − ai) ⊆ In, we conclude that tj(ti − ai) ∈ In for any integer
13



1 ≤ i ≤ j ≤ n, and hence R(ti − ai) ⊆ In for any 1 ≤ i ≤ n. This yields

In = I, as required.

(6) ⇒ (7) It is enough to prove the formula when f, g are two monomials.

We proceed by induction on the length l of fg, and we may assume that

in both monomials f and g the variables appear with increasing indexes.

If the monomial fg itself has its variables appearing in increasing order,

then the result comes from statement (2) in the Theorem 3.7. So, we may

assume that the variables appearing on the right of f and on the left of g

have decreasing indexes. If l = 1, then g = b is a constant and f = ti for

some 1 ≤ i ≤ n. We then have

fg(a1, . . . , an) = (tib)(a1, . . . , an) = σi(b)ai + δi(b) = Tai(b) = (Tai ◦ Lb)(1).

If l = 2, then the result comes from the statement (6) which can be translated

as (tjti)(a1, . . . , an) = (Taj ◦ Tai)(1). Hence, suppose the formula is true for

monomials f, g such that length of fg is less than or equal to l > 2 and

consider two monomials f, g such that the length of fg is l+ 1. The length

of g must be at least 1 and we can write g = g′ti for some i ∈ {1, . . . , n}.
Since the statement (6) is equivalent to (1), we know that In = I is a left

R-module and hence working modulo I, we can write fg = fg′ti ≡ fg′ai.

Hence, writing a for (a1, . . . , an) and Ta for the sequence (Ta1 , . . . , Tan),

we get (fg)(a) = (fg′ti)(a) = (fg′ai)(a). The inductive hypothesis then

leads to (fg′ai)(a) = (f(Ta) ◦ (g′ai)(Ta))(1) = (g(Ta) ◦ (g′ti)(Ta))(1) =

(f(Ta) ◦ g(Ta))(1). This yields the required formula.

(7) ⇒ (8) We show by induction on j ∈ {1, . . . , n} that A has a left

Rj−1-module structure and that the associated (σj , δj)-PLT on A is Tj . It

is easy to check that Ta1 is a left (σ1, δ1)-derivation defined on AA =R0 A.

This gives a left R1-module structure on A. Suppose that we have shown

A has a left Ri structure for 1 ≤ i < j given by the actions of the Tai . We

have to show that Taj is a (σj , δj)- PLT on RiA for every i < j. In fact, the

Remark 3.4 implies that one only needs to show that, for every 1 ≤ j ≤ n,

Taj is a left Rj-module. We compute, for x ∈ A, Taj (ti.x) = Taj (Tai(x)) =

(Taj ◦ Tai ◦Lx)(1) = (tjtix)(a) = (σj(ti)tj + δj(ti)x)(a), where we have used

the formula given in (7). Let us write σj(Taj ) and δj(Tai) for σj(ti)(Taj )

and δj(ti)(Tai) respectively. Using the first statement given in Theorem

3.7, we then get (σj(ti)tj + δj(ti)x)(a) = ((σj(Tai) ◦ Taj + δj(Tai))(x) =

σj(Tai)(Taj (x)) + δj(Tai)(x) = σj(ti).Taj (x) + δaj (Ti).x. This shows that we

have Taj (ti.x) = σj(ti).Taj (x) + δaj (Ti).x, as required.

(8) ⇒ (9) This is a direct consequence of Corollary 3.3.
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(9) ⇒ (1) Since ψ is a ring homomorphism, we have thanks to Theorem

3.7, for every f, g ∈ R,

(fg)(a) = (fg)(Ta1 , . . . , Tan)(1) = f(Ta1 , . . . , Tan)g(Ta1 , . . . , Tan)(1).

Therefore, if i < j, one can conclude that

(tj(ti − ai))(a1, . . . , an) = (Tj ◦ (Ti − ai))(1) = Taj (Tai(1)− ai) = 0.

This shows that statement (4) above is satisfied, and hence In is indeed a

left ideal of R and is equal to I. □

Remark 3.10. When the sequence Ta1 , . . . , Tan is good, we get a left R-

module structure on A given by p(t1, . . . , tn) ⋆ a = p(Ta1 , . . . , Tan)(a).

Remarks 3.11. 1) If n = 1, we obviously have I = I1 and all points are

good.

2) In general, the two additive subsets In ⊂ I are different. As men-

tioned above, we will use In for our evaluation. The reason is that while

evaluating with respect to I we often face the following problem: the left

R-module I can be the entire ring. So that the evaluation of any polynomial

at (a1, a2 . . . , an) ∈ Kn with respect to I is zero. This is the case in the Weyl

algebra R = A1(K) = K[t1][t2; id,
d
dt1

] for the point (0, 0) since we then have

t2t1− t1t2 = 1, and hence Rt1+Rt2 = R. This is not the case with our eval-

uation since, for instance, t2t1 = t1t2+1, so that t2t1+I2(0, 0) = 1+I2(0, 0),

and hence the evaluation of t2t1 at (0, 0) is just 1.

3) In fact, it is quite often the case that I = R, even if we are using Ore

polynomials with zero derivations. For example, consider the Ore extension

R = K[t1;σ1][t2;σ2], where K is a field and σ2 is an endomorphism of

K[t1;σ1] such that σ2(t1) = t1. It is easy to check that for any (a1, a2) ∈ K2,

we have (t2−σ1(a2))(t1−a1)+(−t1+σ2(a1))(t2−a2) = σ1(a2)a1−σ2(a1)a2.
So that if σ1(a2)a1 − σ2(a1)a2 ̸= 0, then the left ideal I(a1, a2) = R. This

shows that very often the evaluation modulo I turns out to be trivial. Once

again, this is not the case with our evaluation, since we have t2(t1 − a1) is

represented by σ1(a2)a1 − σ2(a1)a2 modulo I2(a1, a2).

Definition 3.1. A point (a1, . . . , an) ∈ An will be called a good point if the

two ways of evaluating a polynomial in K[t1;σ1, δ1][t2;σ2, δ2] · · · [tn;σn, δn]
at (a1, . . . , a2) coincide, i.e., if In(a1, . . . , an) = I.

The advantage of the good points is that in this case the evaluations via

the left ideal I and via the additive subgroup In coincide and we can use the

product formula. But, of course, we can still evaluate a polynomial at any
15



point via our additive subset In = R1(t1 − a1) + · · ·+Rn−1(tn−1 − an−1) +

R(tn − an).

Example 3.2. (1) In the classical case (σi = idK and δi = 0, for every

1 ≤ i ≤ n) we have every point (a1, . . . , an) ∈ An is good.

(2) If K is a division ring, σ1 = idK , δ1 = 0, σ2 = id, and δ2 = d/dt1,

then we have (t2 − b)(t1 − a) = (t1 − a)(t2 − b) + 1 for any a, b ∈ K.

This shows that in this case there are no good points.

(3) Although we don’t have a nice product formula in general, we still

have one when the point that is considered for evaluation is a good

point and also in some cases depending on the polynomials. Let us

notice in particular, that if g ∈ Rn, then for any f ∈ R1 and any

point a ∈ An, we have fg(a) = f(Ta)(g(a)). Indeed, Remarking that

In =
∑n

i=1Ri(ti − ai) is a left R1 submodule of R = Rn, and using

Theorem 3.9 (7) as well as Theorem 3.7 (2) we get that g−g(a) ∈ In,

so f(g − g(a)) ∈ In and hence fg − f(Ta)(g(a)) ∈ In, as required.

Finally, note that working with In instead of I, we avoid the prob-

lem of having points that are zeros of every polynomial in the ring R =

A[t1;σ1, δ1][t2;σ2, δ2] · · · [tn;σn, δn].

4. The set of zeros and interpolation

In this section, we will assume that the base ring A = K is a division

ring.

If Σ ⊆ Kn, then we can consider the subset of the following ring

R = K[t1;σ1, δ1][t2;σ2, δ2] · · · [tn;σn, δn],

given by

I(Σ) = {f(t1, . . . , tn) ∈ R | f(σ) = 0 for all σ ∈ Σ}.

And, on the other hand, to J ⊂ R, we attach the following subset

V (J) = {a = (a1, . . . , an) ∈ Kn | f(a) = 0 for all f ∈ J}.

A subset Σ ⊆ Kn is said to be algebraic if there exists f ∈ R such that

f(Σ) = 0, i.e., if I(Σ) ̸= 0. Let us remark that, in general, I(Σ) is an

additive subset of R, but is not a left ideal. Nevertheless, the following

lemma shows many similarities with classical algebraic geometry.

Lemma 4.1. With the above notations, we have the following statements:

(1) If Σ1 ⊆ Σ2 ⊆ Kn then I(Σ2) ⊆ I(Σ1) ⊆ R.

(2) If J1 ⊆ J2 ⊆ R then V (J1) ⊆ V (J2) ⊆ Kn.
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(3) For any Σ ⊆ Kn, we have Σ ⊆ I(V (I(Σ))).

(4) For any J ⊆ R, we have J ⊆ I(V (J)).

(5) I(Σ1 ∪ Σ2) = I(Σ1) ∩ I(Σ2).

For a subset Σ ⊂ Kn, we denote by Σ the set V (I(Σ)).

Examples 4.2. (a) Let us mention a fundamental difference with the classi-

cal algebraic geometry that appears even in dimension 1, i.e., while working

with R = K[t;σ, δ]. Consider the algebraic set Σ = {a, b} ⊂ K such that

b = ax = σ(x)ax−1 + δxx−1 for some nonzero x ∈ K. It is easy to check

that the polynomial p(t) = (t− aa−b)(t− b) is a generator of the (principal)

left ideal I(Σ). But Σ is exactly the sets of elements of the form aλ+xµ with

λ, µ ∈ Cσ,δ(a). Of course, if K is commutative, σ = id., and δ = 0, then we

get back the fact that Σ = Σ.

(b) In dimension n = 2, let us compute I({(a1, a2), (b1, b2)}). If q(t1, t2) ∈
I({(a1, a2)}) ∩ I({b1, b2}), then we can write

q(t1, t2) = p1(t1)(t1 − a1) + p2(t1, t2)(t2 − a2),

with q(b1, b2) = 0. A short computation shows that this last equation is

equivalent to p1(b
x
1)x + p2(b

y
1, b

y
2)y = 0. So, denoting x := b1 − a1 and

y = b2 − a2, we conclude that I({(a1, a2), (b1, b2)}) = {p1(t1)(t1 − a1) +

p2(t1, t2)(t2 − a2) ∈ R | p1(t1)x+ p2(t1, t2)y ∈ R1(t1 − a1) +R2(t2 − a2)}.
(c) Any finite subset of Kn is algebraic.

As in the case of a single variable, we introduce the notions of P -basis

and P -independence in the following definition.

Definition 4.3. If Σ ⊂ Kn is algebraic and a ∈ Kn, we say that a is

P -dependent on Σ if a ∈ V (I(Σ)). An algebraic subset Σ ⊂ Kn is called

P -independent if for any s ∈ Σ, there exists Ps ∈ V (Σ \ {s}) such that

Ps(s) ̸= 0. A maximal P -independent subset B ⊆ Σ is called a P -basis.

These definitions are direct generalizations of the ones given in the case

of one variable setting.

In addition, for a subset Σ ⊆ Kn, and 1 ≤ i ≤ n, we define

Σi = {a ∈ K | (a1, . . . , ai−1, a, ai+1, . . . , an) ∈ Σ, for some aj ∈ K}.

Proposition 4.4. If, for some 1 ≤ i ≤ n, Σi is an (σ, δi)-algebraic set, then

Σ is an algebraic set as well. Moreover, any P -basis for Σi will give rise to

a P -basis for Σ.

Proof. Assume Σi is a (σi, δi)-algebraic set. This means that there exists

a polynomial fi(ti) ∈ K[ti;σ, δi] such that fi(Σi) = 0. The existence of
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P -basis in the univariate case is a well-known fact, and hence we can find

{s1, . . . , sr} ⊆ Σi that is a P -basis for Σi. In particular, this subset is (σi, δi)

P -independent. If, for 1 ≤ j ≤ r, aj ∈ Σ are such that (aj)i = sj , we have

that for any polynomial f from K[ti;σi, δi], f(aj) = f(sj). This quickly

gives the conclusion that the set {a1, . . . , ar} ⊂ Σ is P -independent. The

fact that the set {a1, . . . , ar} ⊂ Σ is a P -basis is clear since any polynomial

from K[ti;σi, δi] annihilating {s1, . . . , sr} ⊆ Σi will also annihilate Σi, and

hence Σ. This finishes the proof. □

Of course, the converse of this proposition is untrue, in other words, there

exist subsets Σ of Kn that are algebraic but none of the Σi, 1 ≤ i ≤ n is

algebraic.

Lemma 4.5. Let Σ ⊂ Kn be a P -independent set. Then, for any 1 ≤ i ≤ n,

the set Σi ⊂ K of i-th coordinates of elements of Σ is P -independent with

respect to (σi, δi).

We first recall the classical commutative setting of the elementary inter-

polation (so K = k is commutative, σ = id., δ = 0, and n = 1): for a finite

subset Σ = {a1, . . . , al} ⊂ K of distinct points and any set {b1, . . . , bn} ⊂ K,

there exists a monic polynomial p(X) ∈ k[X] such that, for any i = 1, . . . , n,

we have p(ai) = bi. The analogue of the fact that the points are distinct will

be here the fact that the points are P -independent. The case when n = 1

was treated in different papers, refer to [8] and [6] for more information.

Theorem 4.6. Consider two finite subsets Σ = {a1, . . . , al} ⊂ Kn and

{b1, . . . , bl} ⊂ K. Suppose that Σ is P -independent. Then there exists a

monic polynomial p ∈ R = K[t1;σ1, δ1][t2;σ2, δ2] · · · [tn;σn, δn] such that

p(ai) = bi for each i = 1, . . . , l.

Proof. Since Σ is P -independent, we know that, for any 1 ≤ i ≤ l, there

exists a polynomial pi ∈ R such that pi(aj) = 0 if i ̸= j and pi(ai) ̸= 0. By

scaling we may assume that pi(ai) = 1. The polynomial p =
∑l

i=1 bipi is

the desired polynomial. □

5. multivariate Ore extensions

This short section is concerned with a construction of a noncommuta-

tive polynomial ring that is essentially due to U. Mart́ınez-Peñas and F. R.

Kschischang [12]. We slightly extend the context by considering a general

ring for the coefficients. The theory resembles very much the case of one

variable and the introduction of PMT (see below) is, as usual, a useful tool.
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Definition 5.1. Consider a ring A, t1, . . . , tn are n variables, σ : A →
Mn(A) a ring homomorphism, and a sequence of n additive maps δ1, . . . , δn.

We denote by F the free monoid generated by the variables {t1, . . . , tn} and

by S = A[t;σ, δ] the set of polynomials of the form
∑

m∈F αmm, where

αm ∈ A. On this set, we define the natural addition and we introduce a

multiplication based on the multiplication in F (concatenation) and on the

following commutation rules:

∀ 1 ≤ i ≤ n, ∀ a ∈ A, tia =

n∑
j=1

σ(a)ij(a)tj + δi(a).

For editorial reasons, for a ∈ A, we will write σij(a) instead of σ(a)ij ,

viewing σij as a map from A to A.

Remarks 5.2. (1) The associativity of the ring S leads to the following

rule for the maps δ1, . . . , δn:

∀a, b ∈ A, δi(ab) =
n∑

j=1

σij(a)δj(b) + δi(a)b.

In a compact form, this can be written as δ(ab) = σ(a)δ(b) + δ(a)b.

(2) The fact that σ and δ satisfy the above properties can also be summa-

rized by asking that the map ϕ from A to the matrix ring Mn+1(A) defined

by

ϕ : A→Mn+1(A) with a 7→

(
σ(a) δ(a)

0 a

)
,

is a ring homomorphism.

(3) If V is a left S-module, then V is also a left A-module and, for any

1 ≤ i ≤ n, the action of ti on V must satisfy the following equality

ti.a.v = (
∑
j

σij(a)tj + δi(a)).v.

This leads to maps T1, . . . , Tn ∈ End(V,+) that satisfy

∀ 1 ≤ i ≤ n, Ti(a.v) =
∑
j

σij(a)Tj(v) + δi(a).v.

In other words, writing T = (T1, T2, . . . , Tn)
t for a column of elements in

End(V,+), we can write in a compact form as follows:

T (a.v) = σ(a)T (v) + δ(a)v.

A sequence of maps satisfying these equations will be called a (σ, δ)-pseudo-

multilinear transformation ((σ, δ))-PMT, for short) on V . For example, one

can check that the sequence δ = (δ1, . . . , δn) is a PMT on A. What we just
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said is that there is a one-to-one correspondence between left modules over

S and the set of PMTs over left A-modules.

As in the case of a single variable, the following map

φ : S → End(V,+) such that φ(f(t)) = f(T ),

is a ring homomorphism.

(4) We define the evaluation of f(t) ∈ S = A[t;σ, δ] at (a1, . . . , an) ∈ An,

via the representative of f(t) + I ∈ S/I by an element of A, where I is the

left ideal I = S(t1 − a1) + S(t2 − a2) + · · · + S(tn − an). For example, if

n = 2, then evaluating t1t2 at (a1, a2) we get σ11(a2)a1+σ12(a2)a2+ δ1(a2).

Since S/I is a left S-module, it gives rise to a (σ, δ)-PMT on S/I given

by the actions of ti for 1 ≤ i ≤ n. The elements of S/I are represented by

an element of A so that the action of ti on S/I can be described by

ti.(x+ I) = tix+ I =
∑

σij(x)aj + δi(x).

The PMT attached to (a1, a2, . . . , an) ∈ An is Ta = (Ta1 , Ta2 , . . . , Tan) where,

for x ∈ A and 1 ≤ i ≤ n, we have Tai(x) =
∑n

j=1 σij(x)aj + δi(x). As in the

case of a single variable, the link between evaluation and PMT is given by

the formula:

f(a) = f(Ta)(1).

The proof of this formula is easily obtained by first reducing it to monomials

and then proceeding by induction on the length of a monomial. The fact

that the map φ in (3) above is a ring homomorphism, then immediately

leads to the product formula (fg)(a) = f(Ta)g(a) for f, g ∈ S and a ∈ A.

In particular, if g(t) = x ∈ A, then we have (f.x)(a) = f(Ta)(x). This

shows the link between the kernel of f(Ta) and the roots of f(t). One

can readily check that Ta is a right linear map over the subring given by

Cσ,δ(a) := {x ∈ A | Ta(x) = ax}. In the case when A = K is a division ring,

Cσ,δ(a) is a division ring isomorphic to EndS(S/I), where I =
∑

i S(ti−ai).
Some information can be obtained on the roots of a multivariate polynomial

by fixing all the variables but one.

(5) Since the map φ associated with a PMT is a ring homomorphism from

S to End(V,+), when φ is not injective, the multivariate polynomial ring is

not simple. The simplicity is thus related to some algebraicity of a PMT,

exactly as in the case of a single variable. We will not go deeper into this

subject. MR4394033 (sent May 2022) Kim, Nam Kyun et al., Annihilating

properties of ideals generated by coefficients of polynomials and power series.

Internat. J. Algebra Comput. 32 (2022), no. 2 6) As a final remark let us

mention that, if the division ringK is finite-dimensional over its center F and
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σ is F -linear, the Skolem Noether theorem shows that σ is diagonalizable. In

other words, there exist an invertible matrix U and a set of n automorphisms

ofK, say σ1, . . . , σn, such that σ = InnU ◦diag(σ1, . . . , σn). In this situation,

the multivariate extension S = K[t;σ, δ] contains the Ore extensions Si =

K[ti;σi, δi]. In the iterated Ore extension this last fact is always true.
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