ITERATED ORE POLYNOMIAL MAPS
ANDRE LEROY AND MEHRDAD NASERNEJAD

ABSTRACT. We study a natural notion of polynomial maps attached to
elements of an iterated Ore extension A[t1; 01, 01][t2; 02, 82] - -« [tn; On, On].
We develop some tools to analyze these maps such as good points, mul-
tilinear transformations, and P-independence. We also present polyno-
mial maps arising in the Multivariate extensions Alt; o, ], introduced
by U. Martinez-Pefias and F. R. Kschischang [12], through the use of
Multilinear polynomial maps.

1. INTRODUCTION AND PRELIMINARIES

Polynomial maps are at the core of many areas in mathematics. For
polynomials with coefficients in a commutative ring, the evaluation is multi-
plicative, that is, the evaluation of a product of polynomials is the product
of their evaluations. In the case of polynomials with coefficients in a non-
commutative ring, it is necessary to define the left and right evaluations
and, moreover, these evaluations are no longer multiplicative. This is a
serious obstacle to a smooth development of polynomial maps in a noncom-
mutative settings. The case of polynomials in one variable with coefficients
in a division ring is manageable thanks to a nice formula for the evalua-
tion of a product. In a series of papers (see [8], [6], [9]) the case of the
evaluation of skew (Ore) polynomials in one variable with coefficients in a
division ring was studied. In these papers, an important tool is the notion
of pseudo-linear transformation, first introduced by Jacobson [5]. Our aim,
in this work, is to consider the evaluation of iterated Ore extensions. We
first introduce the definition of the evaluation for polynomials belonging to
an iterated Ore extension R = A[t1;01,01][t2; 02,02 - [tn; on, On] (see also
[1]) and show that it corresponds to a factor of the ring R by an additive
subgroup of some form. The fact that we don’t divide by a left ideal causes
many problems. In particular, we don’t get (and cannot get) a product for-
mula for the evaluation. We analyze when our additive subgroup is indeed
a left ideal and introduce the notion of good points. In connection with the
evaluation of a polynomial in R at (ai,...,ay), we introduce sequences of

pseudo-linear transformations that help to understand the situation. The
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evaluation of elements in the ring S = K|t; 0,4, K a division ring, of mul-
tivariate polynomials has been recently studied by U. Martinez-Penias and
F. R. Kschischang [12]. The situation is in fact very similar to the univari-
ate extension. We give the definition for polynomials with coefficients in
a ring and introduce pseudo-multilinear transformations which help to get
the product formula and various tools similar to those used in the case of a
single variable.

Let us briefly describe the content of the paper as follows. In Section 2,
we give the definition of the evaluation of skew polynomials in one variable
and recall some of their properties. In addition, in this section, we discuss
the definition of the evaluation for a polynomial belonging to an extension
of the form Alty;01,01][te; 02,02] - - - [tn; opn, 0n] (iterated Ore extension).

The pseudo-(multi)linear transformations are introduced in Section 3, and
their main properties are given. In particular, good points are defined, and
many characterizations are presented.

Section 4 is devoted to some properties of the sets of roots of polynomials
in an iterated Ore extension K[t1;01,01][te; 02,d2] - [tn; on, On).

Note that in [12] the evaluation of a polynomial in A[t; o, d] was defined
when A = K is a division ring. In the last section, we define this evaluation
on a general ring A and use pseudo-multilinear transformations to get a
product formula.

2. ITERATED ORE POLYNOMIALS

Let A be a ring and o € End(A4). An additive map 6 : A — Ais a
o-derivation if, for any a,b € A, we have §(ab) = o(a)d(b) + d(a)b.

We can then construct the Ore polynomial ring A[t; o, d] (introduced in
[14]) whose elements are polynomials Zé:o a;t', where the coefficient a; be-
long to A. Addition of such polynomials is done according to the degree,
as in the case of classical polynomials, but the product is based on the
commutation law, that is, ta = o(a)t + d(a), where a € A.

In what follows, we will always assume that o is injective. An easy in-
duction leads to the following formula:

Va€ A VneN, ta=> frMat, (1)
=0

where f]' stands for the sum of compositions of ¢ maps ¢ and n — ¢ maps ¢.
If o =id. and § = 0, then the Ore extension A[t; o, d] is the usual polyno-
mial ring. If a € A and 0 € End(A), then we define the inner o-derivation of

A by 64(x) = ax —o(x)a for any x € A. Let us remark that in this case, for
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any € A, we have (t —a)x = o(z)(t —a) € R = A[t; 0,6]. This implies that
Alt;0,04) = Alt — a; 0]. If the base ring is commutative, then the evaluation
of usual polynomials is multiplicative; in other words, for f(x), g(z) € Alz]
and a € A, we have (fg)(a) = f(a)g(a). This is not true for Ore polyno-
mials, but in the case of a single variable, we have a product formula as we
shall explain in Example 2.1(4).

When A is a division ring, then A[t; o, d] is always left principal, and hence
admits a left Ore ring of quotients. There are strong connections between
the ring structure and more arithmetical properties of the polynomials (for
instance, invariant and semi-invariant polynomials, Wedderburn polynomi-
als, fully reducible polynomials). This shows that the evaluation of these
polynomials is very important. Evaluations are also related to factorizations
and this has played a crucial role in coding theory, refer to [2]. More recently,
evaluations of skew iterated Ore extensions have been used for “evaluation
codes”, see [1] for more details.

Let us briefly recall the definition of the evaluation of a polynomial f(t) €
R = Alt;0,0] at an element a € A. We define f(a) € A to be the only
element of A such that f(¢t) — f(a) € R(t — a). This means, in particular,
that a € A is a right root of f(¢) when t — a is right factor of f(¢). We then
introduce, for any ¢ > 0, a map N; defined by induction as follows:

No(a) =1, Niji(a) = o(Ni(a))a + 0(Ni(a)).

This leads to a concrete formula for the evaluation of any polynomial f(t) =
Y bit' € R = K[t;0,0] at an element a € A as follows:

fla) = "biNi(a).
=0

Before defining the evaluation of iterated polynomials, we now provide a
few classical examples.

Examples 2.1.

(1) R = CJ[t; —], the commutation rule is here t(a + ib) = (a — ib)t, where
a,b € R. An element a € C is a (right) root of t> + 1 if No(a) +1 =0, i.e.,
@a + 1 = 0. From this, it is clear that #* + 1 is an irreducible polynomial in
R. On the other hand, it is easy to check that t* + 1 is a central polynomial
and we get the quotient R/(t> + 1) is isomorphic to the quaternion algebra
H. Furthermore, the roots of the polynomial t? + 1 are exactly the complex
numbers of norm 1.

(2) Another important kind of Ore extensions is obtained by presenting the

Weyl algebra A; = k[X][Y;d., %], where k is a field. The commutation
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rule that comes up is thus Y X = XY 4 1. In characteristic zero, this
algebra is simple (it doesn’t have any two-sided ideal except 0 and Aj).
If char(k) = p > 0, then A; is a p? dimensional algebra over its center
k[XP,YP]. Evaluating powers of Y at X we get for instance Y?(X) = X2+1,
Y3(X) = X?+3X, and Y4(X) = X* +6X2 + 3.

We can iterate the procedure and get the Weyl algebra A, (k).

(3) In coding theory, Ore extensions of the form F[t; 0], where ¢ = p™ and
6 is the Frobenius automorphism defined by 6(a) = a?, for a € F,, have
been extensively used (cf. [2]). In [10], both the evaluation and the factor-
ization for these extensions were described in terms of classical (untwisted)
evaluation of polynomials. General Ore extensions have also been used to
construct codes, see [3].

(4) Let us recall the useful formula for the evaluation of the product of two
polynomials f(t),¢(t) € R = A[t;o,0] in the case A = K is a division ring:

(Fo)(a) = 0if g(a) =0 and (fg)(a) = f(a*“)g(a) if g(a) # 0,
where for 0 # ¢ € K, we have a® = o(c)ac™' 4+ §(c)c™'. We write A% (a) :=
{a®| c€ U(A)}, where U(A) denotes the set of invertible elements of A.

Remarks 2.2. (a) We have defined N;(a) for i € N and a an element of
a ring A. These could be called the (o,d)-powers of a € A. Any question
concerning the powers of elements in a ring has an analog in the (o,0)-
setting.

(b) The product formula has been mentioned in the last example is also
available when A is a ring via the use of (o, 0)-pseudo-linear transformations.
They will be introduced later.

In what follows, we consider an iterated Ore extension
R = Alt1;01,61][t2; 02, 02] - - - [tn; on, Ol

We will always assume that, for any 1 < ¢ < n, we have 0;(4) C A and
di(A) C A. It will be convenient to have notations for intermediate Ore

extensions. For this purpose, we put Ry = A, and, for i € {1,...,n — 1},
R; = R;_1[ti; 04, 0;]. Notice that R, = R. For f € R and (ay,...,a,) € A",
our aim is to define the value of f(ai,az, - - ,ay).

Suppose that (a1, a9, - ,a,) € A™ and consider a polynomial

f() = f(tl, R ,tn) €eR= Rn_l[tn; On, (Sn]
We can define fi = f(t1,...,th-1,an) € Rn—1 as the remainder of the
division of fy on the right by ¢, — a,,. This is

fO = Q(tlv cee ’tn)(tn - an) + fl-
4



By the same procedure, we divide f1 = f(t1,...,th—1,an) by tp—1 — an—1
and get the remainder fo = f(t1,...,tn—2,an—1,0n) € Rp—o. This is

fi=flt, .. tho1,an) = @2(t1,t2, .. ty—1)(tn—1 — an—1) + fo.

Continuing this process, we define f3 € R,_3,..., fn_1 € R1, fn € Ry = A.
The evaluation of f(t) at (a1,...,an) is fn € A. We also remark that for
any 0 <i<n—1, we have f; — fit1 € Rp—i(tn—i — an—;).

This leads us to the following definition.

Definition 2.3. For f(t1,...,t,) € R = Alt1;01,01][t2; 02,2] - - - [tn; op, On)
and (ay,...,a,) € A", we define the evaluation of f(ti,to,...,ty) at a
point (a1,...,ay), denoted by f(ai,...,an), as the representative in A of
fti,ta, ... ty) modulo

In(alu cee aan) = Rl(tl - al) +-- Rn—l(tn—l - an—l) + R(tn - an)y
where, for each 1 <i <n, R; stands for R; = Alt1;01,01] - [ti; 04, 0i].

The above discussion shows that for any polynomial f(¢) € R there exists
an element ¢ € A such that f(t) —c € I,. Notice that I,, = I,,(a1,...,ay) is
an additive subgroup of (R, +) and is not, in general, a left ideal in R = R,,.
We will consider and characterize those points for which I,, is indeed a left
ideal of R, see below.

Another way to compute the evaluation is to note that the polynomi-
als in R = Alt1;01,01][t2;02,02] -+ - [tn; 0n, 0n] can be written in a unique
way as sums of monomials of the form ozll’___’lntllltl; . --til", for some 0 <
€ A. The sum Y !, l; is called the degree

of the monomial and the degree of a polynomial is given by the degree

li,lg, ...l < nand oy,
of the monomials with a higher degree. First remark that if a monomial
m = m(ty,...,t,) is of degree [, then for any a € A*, ma is a polynomial
of degree | as well. We define the evaluation by induction on the degree. In
practice, it is sufficient to define the evaluation of a monomial.

For (a1,a9,...,a,) € A™ and m = m(t1,...,t,), we define m(ay,...,a,)
as follows:

If deg(m) = 1 and m = at; for some 1 < ¢ < n and o € A, then
m(ay,...,ay) = aa;. So, assume that the evaluation of the monomials

of degree < [ has been defined and consider a monomial m = m(t) such
that deg(m) =1 > 1 and m = m/(t1,...,t;)t; for some 1 < j < n, then
m(a1,...,an) = m”(ai,...,a;) such that the polynomial m”(t1,...,t;) =
m/(t1,...,tj)a; is of the degree smaller than [.

We are now going to make some remarks about this evaluation.
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Remark 2.1. (1) First let us notice that, before we evaluate a polyno-

mial, we must write it with the variables appearing in the precise
order ty,ta,...,t, (from left to right). In other words, before eval-
uating a polynomial we must write it as a sum of monomials of the
form ¢\ - tln.

Of course, this is not the only possible definition, but although it
might look a bit strange, it is still natural if we want the zeros being
right roots. Let us look more closely at the case of two variables. In
other words, it is natural for (aj,as) to annihilate a polynomial of
the form g(t1)(t2 — a2); but we don’t necessarily expect (aj,ag) to
be a zero of a polynomial of the form (t; — a1)h(t1).

Since the base ring is not assumed to be commutative, we must be
very cautious while evaluating a polynomial, even when the variables
commute. With this definition, ¢;t2 € A[t1, 2] evaluated at (a,b)
gives (t1t2)(a,b) = ba. This might look very strange, but if we think
of evaluation in terms of ”operators” via the right multiplication
by b followed by the right multiplication by a this evaluation looks
perfectly fine and the apparent awkwardness disappears.

We assume that the different endomorphisms o;’s are such that
0i;(A) € A. In other words, for i > 1, o; is an extension of o;|x
to R;—1. Some commutation relations exist between the different
endomorphisms o;. For instance, consider the polynomial ring ex-
tension R = A[t1; 01][te; o2]. If we put o9(t1) = Zé:o a;tt computing
o9(o1(a)ty) = oo(tia) = oa(t1)o2(a), leads to the following equations

v 0 S ) S l, aiJZi(UQ(CL)) = 02(01<a))ai.

Let us now give some examples.

Examples 2.4. (1) Let A;(k) = k[X][Y;id., -%] and (a,b) € k. Then

(2)

o VX = XY+1=X(Y—-b)+bX+1= ;()EY—b)+b(X—a)+ba+l,
and hence (Y X)(a,b) = ba + 1.

e VX2 = X2V +2X = X2V —b) + bX? +2X = X2(Y —b) +
bX (X —a) + baX +2(X — a) + 2a, and hence (Y X?)(a,b) =
ba? + 2a.

o V2X = XY?4+2Y = XY (Y —b)+bX (Y —b)+bXb+2(Y —b)+2b,
and therefore (Y2X)(a,b) = b%a + 2b.

Consider the double Ore extension R = F,[ty; 0][ts; 0], where ¢ = p",

0(a) = aP, and O(t1) = t1. A polynomial p(t1,t2) € R can be written

as p(t1,t2) = Yoropi(t)th = doij ai,jt{té, and we can easily check
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that

('-1p)  pioi

p(t1,t2)(a,b) = ZQj(Ni(b))Nj(a) =b ot ari.

(3) Consider the polynomial ring R = K|[t1;01,01][t2; 02, 2], and let us
evaluate the polynomials ¢1t5 and tot; at (a1,as) € K2. So, we want
to compare (t1t2)(a1,az) and (t2t1)(ai, az).

e We have tity = t1(ta—ag)+t1as = t1(ta—az)+o1(az)t; +d1(az).
This leads to (t1t2)(a1,az) = o1(az)as + d1(ag).

° (tgtl)(al, CLQ) = (UQ(tl)tQ + 52(t1))(a1,a2) = 0'2((11)&2 + 52(&1).

(4) Let us compute (t1tots)(a1, az,as) and (tstat)(a1, az,as).

e We have t1t2t3 = tltz(tg—a3)+t1t2a3 = t1l2 (t3—a3)+t1 (Jg((lg)tg
+02(ag)) = tita(ts —ag) +tioa(as)ta +t102(as) = tita(tzs —as)+
01(02<a3))t1t2 + 0'1((52(a3))t1 + (51((52(&3)). This leads to
(t1t2t3)(a1, as, a3) =01 (02(&3))@1@2 + 01 (52(&3))&1 + (51 ((52(@3)).

o t3tot] = tz(oa(ti)ta + d2(t1)) = t3(o2(t1)ta) + t32(t1) =
o3(oa(t1)te)ts + 0'3(52(t1)) + 03(d2(t1)). We thus get
tstati(a1, ag, a3) = o3(02(a1)az)as + o3(d2(a1)) + d3(d2(az)).

(5) Monomials in a single variable can be evaluated in the classical ways
(as has been stated at the beginning of this section). Hence, let us
introduce the following notation. For 1 <i <n, 7 € N, and z € A,
we put

Nij(x) = (t])(x).

Of course, this is just the usual evaluation in A[t;;0;,6;]. As in (1)
above we can introduce, for any 1 < i <[, the maps f,l{,i from A to
A as being the sum of all monomials with ¢ maps o} and [ — i maps
0. We can then evaluate monomials over a general ring A. To see
an example, we compute the case in which n = 2 the evaluation of
tilt% at (a1,az). We thus compute modulo R;(t; — a1) + Ra(te — a2)
and get successively:

t1, = 1Ny j(a2) = Y f11(Naja2))th = £ (Naj(az))Nyg(as).
l l

3. PSEUDO-LINEAR TRANSFORMATIONS

The pseudo-linear transformations were introduced by Jacobson (cf. [5]).
They are the analog of the usual linear transformations of vector spaces and
many of the classical results of linear algebra have their analog for pseudo-
linear transformations, see [10]. In the case of one variable, the pseudo-

linear transformations are fundamental since, as we will see, they allow us
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to describe the left R = K|[t; 0; 0] modules, they give a way to evaluate the
polynomials, they provide a product formula, and they lead to vector spaces
in the set of roots of a polynomial, and that finally gives a bound on “the
number of roots”.

If V is a left module over R := AJt; 0, 6], then V is a left A-module, and
the variable t acts on the left of V. We thus have

t.(aw) = (ta).v = (o(a)t + d(a)).v = o(a)t.v + §(a)v.

Of course, left multiplication by ¢ on V is additive. This justifies the follow-
ing definition.

Definitions 3.1. Let V be a left A-module and o and & be respectively an
endomorphism and a o-derivation of A. An additive map T : V — V such
that, for all a € A and v € V', we have T(aw) = o(a)T(v) + é(a)v is called
a (0,0 )-pseudo-linear map.

We have seen that whenever V' is an A[t; o, §]-left module, the action of ¢
on V gives rise to a (o, 0)-pseudo-linear map on 4V. Conversely, if 4V is a
left A-module, and T': V. — V is a (o, §)-pseudo-linear map defined on V,
then V' can be given a left A[t; o, §]-module structure by defining t.v = T'(v)
for any v € V. This leads to a one-to-one correspondence between the
set of A-modules V' equipped with a (o, §)-pseudo-linear map and A[t; o, 0]-
left module. For more details on pseudo-linear maps, we refer the reader
to [5], [10], and [6]. If @ € A, then the map T, : A — A defined by
To(x) = o(x)a+ 6(x) is a (o, )-pseudo-linear transformation on A. Notice
that for a = 0, we have Ty = §. Coming back to a general (o, d)-PLT on A,
it is easy to check that if 7" is a (o, d)-PLT defined on 4V, we have for any
acA,neN andveV

T"(av) = ) f(@)T'(v),
=0

where f* is the sum of all the words in % letters ¢ and n — i letters .
Comparing this last equation with the one given in (1) (see Section 1) leads
to the following ring homomorphism:

n n
¢: R= Alt;0,6] - End(V,+) given by go(z ait’) = Z Lo, T,
=0 =0
where, for each a € A, L, stands for the left multiplication by a, i.e., L,(v) =
av, for any a € A and v € V. The details can be found in the papers that

have been mentioned above. The (o,0)-PLT T, defined above allows us to
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translate the evaluation, as follows:
P(a) = P(T.)(1).

Using the fact that the map ¢ is a ring homomorphism, we easily get the
product formula for Ore polynomial with coefficients in a ring. This easily
leads to (f(t)g(t))(a) = f(Ta)(g(a)).

This can be viewed as a general product formula also valid for an Ore
extension based on a ring A that is not a division ring. The (o, d)-PLT is
also connected with roots of a polynomial inside a given (o, d)-conjugacy
class. We start by considering a special case of the product formula when
g(t) = x € A. We then get (f(t)x)(a) = f(T,)(x), and hence

Kerf(Ty) ={x € A| (f(t)x)(a) = 0}.
We also introduce the following subring of A
C%%(a) = {b e A| T,(b) = ab}.

We compute Ty, (zb) = o(zb)a + §(zb) = o(z)(o(b)a + §(b)) + d(x)b =
o(x)Ta(b) + 6(x)b = o(x)ab + d(x)b = To(x)b, and conclude that Ty, is a
right C?9(a)-morphism. Therefore, for f(t) € R = A[t;0,d] and a € A,
the kernel Kerf(T,) is a right C?°(a)-module. When A = K is a division
ring, the subring C?(a) is a division ring (isomorphic to Endg(R/R(t—a)))
and the right roots of a polynomial belong to a finite number of conjugacy
classes, say {A%9(ay),..., A% (a,)}. Denoting C; as the class C%°(a;), we
obtain
> _ dimg, (Ker(f(73))) < deg(f)-

We now consider an iterated extension A[t1; 01, 01][t2; 02, 02] - - - [tn; On, Op]-
We will always assume that, for any 1 < i <n, 0;(4) C A and §;(A) C A.
First, we introduce some notations as follows:

Ry=A=5p and for 1 <i < n, we put S; = Alt;; 04, 9;] and define

Ry = Alty;01,61],

Ry = Ri[to; 09,00] = Alt1; 01, 61][t2; 02, 62],

R3 = Ralts; 03,03 = Alt1; 01, 01][t2; 02, 62][t3; 03, 03], and finally

R =R, = Ry_1[tn; 0n,0n] = Alt1;01, 01][t2; 02, 02] - - - [tn; On, 0p]. We also
deﬁne, for1 <3 <j <n, Dij = Uj(ti) S Rj_l and qij = 5j(ti) S Rj_l.

The following proposition is the analog of a classical result in the case of
a single variable Ore extension (cf. [6]).

Proposition 3.2. Let A be a ring and, for each 1 < i < n, let (0;,0;) be

endomorphisms and o;-derivations on A, and

R = Alt1;01,61][t2; 02, 02] - - - [tn; on, On).
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Let also AV be a left A-module. Then the following statements are equiva-
lent:

(i) 4V has a left R-module structure.
(ii) For each 1 <i<n, V is a left Ri-module structure.
(iii) For each 1 <1i < n, the left multiplication by t; is a (0;,6;)-PLT on
V' considered as a left R;_1 module.
(iv) There exists a subset {T1,...,T,} C End(V,+) such that for each
1<i<mn,T;isa(od)-PLT on g,V such that for all1 <i < j <nmn,
we have T o T; = p; j(Th, ..., Tj—1)Tj + qi;(T1, ..., Tj-1).

Proof. (i) = (ii) This is straightforward since R; is a subring of R = R,,.

(ii) = (iii) The proof goes by induction on i > 1.

(iii) = (iv) The maps T; are given by the left multiplication by t;. We
prove the equality given in (iv) for j =2 and v € V.

We have (TQOTl)(U) = Tz(tl.’l)) = UQ(tl).TQ (1))—}—(52(151).1) = plz(tl).TQ('I})—‘r
q12(t1).v = p12(T1)(T2(v)) + q1,2(T1)(v) = (p1,2(T1) © T2)(v) + q1,2(T71)(v).
This proves the formula for j = 2. The general case is similar.

(iv) = (i) The left R = R,, module structure on V' is given via ¢;.v = T;(v).
The equality given in (iv) will insure that the successive action of ¢; and t;
are compatible with the product in R. ([

With the notations of the above proposition, we get the following corol-
lary.

Corollary 3.3. The map ¢ : R — End(V,+) defined by

.....

is a Ting homomorphism.

Proof. First, note that we have the following equalities

p(tia) = p(oi(a)t; + di(a)) = Loa) © Ti + Ls;(a) = Ti © La = ¢(t:) © o(La).
We leave it to the reader to check that ¢(t;t;) = ¢(t;) o p(t;). O

Remark 3.4. Having a sequence T, ..., T, such that T; is a (0, ;)-PLT
on a left A-module V', we get a left structure of S; = Alt; 0y, §;]-module on
V. This is of course not enough to get a structure of left R-module on V. In
fact, what is needed is to have an “increasing” sequence of structures defined
on V as follows: T7 on 4V leads to a left Ri-structure on V', T5 defined on
r,V leads to a left Ry structure on V, T3 defined on g,V leads to a left
Rj3 structure on V', and so on. This will be of particular importance while
considering a sequence of elements (ai,...,a,) € A™ and their associated

PLT defined on V = A via T;(x) = o4(x)a; + d;(x) for all z € A.
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We continue our argument with the following definition.

Definition 3.5. Let A a ring, R = Alt1; 01, 01][t2; 02,02] - - - [tn; On, On] be an
iterated Ore extension, AV a left A-module, and (T1,...,T),) be a sequence of
maps in End(V, +) such that for each 1 <i <n, T; is a (0;,0;)-PLT of AV .
This sequence (T4,...,Ty,) is called good if (AV,T1) gives a g,V structure
onV, and Ty is a (092,02)-PLT on g,V so that (g, V,T2) defines an g,V
structure on 'V and inductively, for any 1 < i <n, Ti41 is a (04,06;)-PLT on
R,V -structure which leads to an R; {1 module structure on V.

Example 3.6. For our purpose, one of the most important examples of
sequences of PLT comes from the evaluation maps. Let a = (ay,...,a,) €
A™ and consider the following iterated Ore extension

R = Alti;01,61][t2; 02,02] - - - [tn; on, On).

For 1 <i < n, we define the map T; : A — A given by T;(z) = o;(x)a;+;(x)
for all x € K. This sequence of PLT’s defined on K corresponds to a left
R-module structure on K. This R-module structure is closely related to
evaluation at a. The point of the next theorem is to study this connection.

Theorem 3.7. Let A be a ring and R = Alt1; 01, 01][t2; 02,02) - - [tn; On, On)
an iterated Ore extension on A. For a = (a1,...,a,) € A", we let T; = Ty,
be the PLT on A defined in the above example and f = f(t1,...,t,) € R.
Then the following statements hold.

(1) For any x € A, we have (fz)(a1,...,an) = f(Tuy,-..,Ta,)(x).

(2) We have f(ai,...,an) = f(Tay,--.,Ta,)(1).

(3) For any x € U(A), we have

f(Tay,-. .\ Ta,)(z) = (fx)(aL,...,an) = f(a],...,a;)z,
where for each i € {1,...,n}, a¥ = oy(x)a;z~t + &;(z)z L.
Proof. (1) It is enough to consider the case in which f =m = tlll tl; cethn s

a monomial. We then use induction on the length of the monomial. So, if
m = t;, for some 1 < i < n, then we have the following equalities

(tix)(ai,...,an) = (oi(z)t; + 6i(x)) (a1, ..., an) = gi(x)a; + 0i(z) = Ty, (x),

for any x € A, and hence the formula is verified. Now, assume that
m(ty, ..., tn) = m/(t1,...,t;)t; for some m’ € R and i € {1,...,n} and
also the equality holds for m’. Notice that m’ € R;. We then compute
modulo I, = Ry(t1 — a1) + - -+ + Ry (tn, — a,) and deduce that

mx + I, = m'tix + I, = m/(Uz’(ﬂﬁ)tz’ + 6i()) + In.
11



Asm/ € R; and R;(t; — a;) C I,, we get mx + I, = m/(o;(x)a; + 6;(x)) + L.
Our induction hypothesis then implies that

mx + I, = m'(Ty,, ..., Ty, )(oi(x)a; + §;(x)) + I,.

Hence, we conclude that (mz)(ay,...,a,) = m/(Ta,, ..., Ty, ) (oi(x)a;+d;(x))
=m/(Tyy,...,Ta,) (T, () = m(Tu,,...,T,,)(x). This finishes the induc-
tion and yields the result.
(2) This is obtained by choosing = 1 in statement (1) of this theorem.
(3) The first equality is just the equation (1) above. We have

f+) Rilti—af) = f(af,...,ap) + > Ri(ti — af),

and right multiplying by «, this gives that
fxr+ ZRi(ti —al)x = f(af,...,a5)x + Z Ri(t; — a )x.
i i

We then remark that (¢, —a?)x = 0;(z)(t;—a;) and get the following equality
fo+ Y Ri(ti—a;) = f(af,....ab)z + Y Ri(ti — as).
i i
This shows our claim. |

Example 3.8. The statement (3) above can be used to obtain a closed
formula for the evaluation of f(t1,...,t,) = Zalh“,’lnt?té“’---tﬁ{l at the
point (ay,...,a,) € K™ For instance, in the case in which n = 2 and
(a,b) € K?, we consider the evaluation of f(ti,ty) = Z?:’l(ij:o ai,jt’it% at
(a,b) and, assuming z; := N;2’62 (b) # 0 for 0 < j <o, we deduce that

fla,b) = a; jN7 (%),
i

Let us now turn to another possible way of evaluating a polynomial
f(tl, R ,tn) € R = A[tl; o1, (51”t2; 02,52] v [tn; Un,5n] at (al,ag, ceey an) S
K™. We consider the element of K representing f in the quotient R/I,
where I = R(t — a1) + R(t — a2) + -+ + R(t — a,). The set I is the
usual left ideal of R and this evaluation looks more classical. Unfortu-
nately, in general, for a sequence (ay,...,a,) € A™ it arises frequently that
I = R and this new evaluation is then not a good one. We say that a
point (a1,...,a,) € A" is good if we have I, = > " | Ri_1[t;;04,0;) = I.
The next proposition will compare the two evaluations by comparing I,, =
Ri(ti—a1)+--+ Rp—1(tn—1 —an—1) + R(t, — a,) and I. It will show that
a point (a,...,an) € A" is good if and only if the sequence (1y,,...,T,,)

is a good sequence.
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Theorem 3.9. Let A be a ring and R = Alty; 01, 01][te; 02, 02] - - - [tn; op, On).
We consider (a1,as,...,a,) € A™ and put

I=R(t1 —a1)+ R(ta —az) + - -+ R(ty, — an),
and
In=Ri(ti—a1) + -+ Ryu_1(th—1 — an—1) + R(tn — an),
where, for each 1 < i <n, R; = Alt1;01,01] - [ti; 0i,0;]. With these nota-
tions, the following statements are equivalent:
I,=1;
R(t; — ai) Cl,;

5) For 1 <i< j<mn, we have 0j(t; — a;)a; + 6;(t; — a;) € In;

)
(2)
(3)
(4) For 1 < i < j <mn, we have tj(t; — a;) € I;
(5)
(6) For1<i<j<mn, we have (tjt;)(a1,...,an) = 0j(a;)a; + d;(a;);
(7)
(
(
(

fg) ay,az,. .. 7a'fl) - (f(TalvTa27 ce 7Tan) og(TauTazv ce 7T&n>)(1)7

8) The sequence (Ty,,Tay, ..., Ta,) of PLT on A is good;

9) The map ¢ : R = A[tl,al,(sl”tQ,Ug,(SQ] [tn;Un,dn] — End(A, +)
defined by (f(t1,...,tn)) = f(Tuy,-..,Ta,) is a ring homomor-
phism.

Proof. (1) < (2) is straightforward.

(2) = (3) If I = R, then I,, = R and, for 1 <1i < n, there exist polynomials
gi(ti,t2,...,t;) € R; such that 1 = >"" | gi(t1,...,t;)(t; — a;). The change
of variables defined by putting y; = t; — a; gives that, for some h; € R;, we
have 1 = > | hi(y1,...,¥i)yi. A comparison of the coefficients of degree
zero of this equality, leads to a contradiction.

(3) = (4) There exists ¢ € A such that ¢;(t; —a;) —c € I, C I. Since
tj(t; — a;) € I, we obtain ¢ € I; hence, by (3), we must have ¢ = 0. This
shows that t;(t; — a;) € I,.

(4) = (5) It follows from t;(t; — a;) € I, that o;(t; —a;)t; +9;(ti —a;) € 1.
Since (t; — a;) € I, we obtain o;(t; — a;)a; + 0;(t; — a;) € I,.

(5) = (6) This is clear since (5) implies that

tjti — aj(ai)aj — 5j(ai) = O'j(ti)tj + 5j(t7;) — Uj(ai)aj - 6j((1i) € In

(6) = (1) The equality in (6) yields that t;t; — oj(a;)a; — 0j(a;) € I, for
1 <i < j < n. This gives that ¢;(t; — a;) € I,. On account of we also

have R;(t; — a;) C I, we conclude that t;(t; — a;) € I, for any integer
13



1 <i<j<mn,and hence R(t; — a;) C I, for any 1 < i < n. This yields
I, = 1, as required.

(6) = (7) It is enough to prove the formula when f, g are two monomials.
We proceed by induction on the length [ of fg, and we may assume that
in both monomials f and g the variables appear with increasing indexes.
If the monomial fg itself has its variables appearing in increasing order,
then the result comes from statement (2) in the Theorem 3.7. So, we may
assume that the variables appearing on the right of f and on the left of ¢
have decreasing indexes. If [ = 1, then ¢ = b is a constant and f = t; for
some 1 <3 <n. We then have

fg(al, ey an) == (tib)(al, ey an) = O'l'(b)al' + 5z(b) == Taz(b) = (Tai e} Lb)(l)

If I = 2, then the result comes from the statement (6) which can be translated
as (tjt;)(ai,...,an) = (Ta; o Ty,)(1). Hence, suppose the formula is true for
monomials f, g such that length of fg is less than or equal to [ > 2 and
consider two monomials f, g such that the length of fg is [+ 1. The length
of g must be at least 1 and we can write g = ¢'t; for some ¢ € {1,...,n}.
Since the statement (6) is equivalent to (1), we know that I,, = I is a left
R-module and hence working modulo I, we can write fg = fg¢'t; = fd'a;.
Hence, writing a for (aj,...,a,) and T, for the sequence (Tg,,...,T,,),
we get (fg)(a) = (fg'ti)(a) = (fd'a;)(a). The inductive hypothesis then
leads to (fg'ai)(a) = (f(Tu) o (g'a))(T)(1) = (9(T) o (g')(Ta))(1) =
(f(T,) 0 g(T,))(1). This yields the required formula.

(7) = (8) We show by induction on j € {1,...,n} that A has a left
R;_1-module structure and that the associated (o;,d;)-PLT on A is Tj. It
is easy to check that T, is a left (o1, d1)-derivation defined on 4 A =g, A.
This gives a left Ri-module structure on A. Suppose that we have shown
A has a left R; structure for 1 < i < j given by the actions of the T},,. We
have to show that T}, is a (0;,d;)- PLT on g, A for every i < j. In fact, the
Remark 3.4 implies that one only needs to show that, for every 1 < j < n,
T,; is a left R;-module. We compute, for x € A, Ty, (t;.x) = Ty, (To, () =
(Ty; 0Ty, 0 L) (1) = (tjtiz)(a) = (0(t:)t; + 0;(t;)x)(a), where we have used
the formula given in (7). Let us write 0;(7,,) and §;(Tq,) for o;(t;)(Ta,)
and 6;(t;)(Tq,) respectively. Using the first statement given in Theorem
3.7, we then get (o;(t:)t; + 0;(t))z)(a) = ((0(Ta;) 0 To; + 6;(1u,))(x) =
0 (Ta; ) (To; () + 6;(To,)(x) = 0j(ti). Ta,; (x) + 64, (T3).x. This shows that we
have T, (t;.x) = 0j(t;).To,; (%) + 0q,; (T3).7, as required.

(8) = (9) This is a direct consequence of Corollary 3.3.

14



(9) = (1) Since ¥ is a ring homomorphism, we have thanks to Theorem
3.7, for every f,g € R,

(fg)(a) = (fg)(Tau s 7Tan)(1) = f(Tau s 7Tan)g(Ta1’ s 7Tan)(]‘)'

Therefore, if i < j, one can conclude that
(tj(ti — ai))(a1, ... an) = (Tj o (Ti — a;))(1) = Ta;(Ta,(1) — a;) = 0.

This shows that statement (4) above is satisfied, and hence I,, is indeed a
left ideal of R and is equal to I. O

Remark 3.10. When the sequence 1y, ..., Ty, s good, we get a left R-
module structure on A given by p(t1,...,tn) xa =p(Tay, ..., Ty, )(a).

Remarks 3.11. 1) If n = 1, we obviously have I = I; and all points are
good.

2) In general, the two additive subsets I, C I are different. As men-
tioned above, we will use I, for our evaluation. The reason is that while
evaluating with respect to I we often face the following problem: the left
R-module I can be the entire ring. So that the evaluation of any polynomial
at (a1,az2...,a,) € K™ with respect to I is zero. This is the case in the Weyl
algebra R = Ay (K) = K[t1][te;d, %] for the point (0, 0) since we then have
tot1 —t1to = 1, and hence Rt + Rto = R. This is not the case with our eval-
uation since, for instance, tot1 = t1ta2+1, so that tat; +12(0,0) = 1+15(0,0),
and hence the evaluation of t2t; at (0,0) is just 1.

3) In fact, it is quite often the case that I = R, even if we are using Ore
polynomials with zero derivations. For example, consider the Ore extension
R = K|t1;01][te; 02|, where K is a field and o9 is an endomorphism of
K|[t1; 01] such that oo(t1) = t;. It is easy to check that for any (a1, as) € K2,
we have (to —o1(a2))(t1 —a1)+ (—t1+02(a1))(te —az) = o1(az)a; —oz(ay)as.
So that if o1(a2)a; — o2(aj)az # 0, then the left ideal I(aq,as) = R. This
shows that very often the evaluation modulo I turns out to be trivial. Once
again, this is not the case with our evaluation, since we have ta(t; — aq) is
represented by o1(az)a; — o2(a1)as modulo Ir(ay,as).

Definition 3.1. A point (ai,...,a,) € A™ will be called a good point if the
two ways of evaluating a polynomial in Klti;01,01][t2; 02,02] - [tn; on, On)
at (a1,...,a2) coincide, i.e., if In(ay,...,a,) = 1.

The advantage of the good points is that in this case the evaluations via
the left ideal I and via the additive subgroup I,, coincide and we can use the

product formula. But, of course, we can still evaluate a polynomial at any
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point via our additive subset I, = R1(t1 —a1) + -+ + Rp—1(tn-1 — an—1) +
R(ty, — an).

Example 3.2. (1) In the classical case (0; = idg and §; = 0, for every
1 <i < n) we have every point (ay,...,a,) € A" is good.

(2) If K is a division ring, o1 = idg, 01 = 0, 09 = id, and o2 = d/dty,
then we have (to — b)(t; —a) = (t1 — a)(tg — b) + 1 for any a,b € K.
This shows that in this case there are no good points.

(3) Although we don’t have a nice product formula in general, we still
have one when the point that is considered for evaluation is a good
point and also in some cases depending on the polynomials. Let us
notice in particular, that if ¢ € R,,, then for any f € R; and any
point a € A", we have fg(a) = f(T,)(g(a)). Indeed, Remarking that
I, =" Ri(t; — a;) is a left Ry submodule of R = R, and using
Theorem 3.9 (7) as well as Theorem 3.7 (2) we get that g—g(a) € I,
so f(g —g(a)) € I, and hence fg — f(T,)(g(a)) € I, as required.

Finally, note that working with I, instead of I, we avoid the prob-
lem of having points that are zeros of every polynomial in the ring R =
Alt1;01,01][ta; 02, 82] -+ [tn; on, 6.

4. THE SET OF ZEROS AND INTERPOLATION

In this section, we will assume that the base ring A = K is a division
ring.
If ¥ C K™, then we can consider the subset of the following ring

R = K[t1;01,01][t2; 02, 02] - - - [tn; On, Ol
given by
IX)={f(t1,...,tn) € R| f(o) =0for all ¢ € 3}.
And, on the other hand, to J C R, we attach the following subset
V(J)={a=(a1,...,an) € K" | f(a) =0for all f € J}.

A subset ¥ C K" is said to be algebraic if there exists f € R such that
f(X) =0, ie., if I(X) # 0. Let us remark that, in general, I(X) is an
additive subset of R, but is not a left ideal. Nevertheless, the following
lemma shows many similarities with classical algebraic geometry.

Lemma 4.1. With the above notations, we have the following statements:
(1) If ¥4 € X9 C K" then I(X2) C I(X1) C R.

(2) If s C Jo C R then V(J;) C V(J3) C K™.
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(3) For any ¥ C K", we have ¥ C I(V(1(X))).
(4) For any J C R, we have J C I(V(J)).
(5) I(El U 22) = I(Zl) N I(Eg)

For a subset ¥ C K", we denote by ¥ the set V (I(X%)).

Examples 4.2. (a) Let us mention a fundamental difference with the classi-
cal algebraic geometry that appears even in dimension 1, i.e., while working
with R = K|[t;0,0]. Consider the algebraic set ¥ = {a,b} C K such that
b= a" = o(z)ax~! + dzx~! for some nonzero x € K. It is easy to check
that the polynomial p(t) = (t —a®"?)(t — b) is a generator of the (principal)
left ideal I(X). But ¥ is exactly the sets of elements of the form a**# with
A\, i € C79(a). Of course, if K is commutative, o = id., and § = 0, then we
get back the fact that ¥ = 3.

(b) In dimension n = 2, let us compute I({(a1,as2), (b1,b2)}). If q(t1,t2) €
I({(a1,a2)}) N I({b1,b2}), then we can write

q(t1,t2) = p1(t1)(t1 — a1) + pa(t1, t2)(t2 — az),

with ¢(b1,b2) = 0. A short computation shows that this last equation is

equivalent to pi(bf)z + p2(by,b5)y = 0. So, denoting = :=

y = be — ag, we conclude that I({(a1,a2),(b1,b2)}) = {p1(t1)

p2(ti,t2)(ta — a2) € R | pi(t1)x + pa(t1,t2)y € Ri(t1 — a1) + Ra(
(¢) Any finite subset of K™ is algebraic.

b1 — a1 and
(t1 —a1) +
t

2 —az)}.

As in the case of a single variable, we introduce the notions of P-basis
and P-independence in the following definition.

Definition 4.3. If ¥ C K" is algebraic and a € K", we say that a is
P-dependent on ¥ if a € V(I(X)). An algebraic subset ¥ C K™ is called
P-independent if for any s € X, there exists Py € V(X \ {s}) such that
Py(s) #0. A mazimal P-independent subset B C 3 is called a P-basis.

These definitions are direct generalizations of the ones given in the case
of one variable setting.
In addition, for a subset ¥ C K", and 1 < i < n, we define

Yi={a€e K| (a1,...,ai-1,a,0i11,...,a,) € X, for some a; € K}.

Proposition 4.4. If, for some 1 <1i <n, %; is an (0, d;)-algebraic set, then
Y. is an algebraic set as well. Moreover, any P-basis for 3; will give rise to
a P-basis for 3.

Proof. Assume ¥; is a (03, d;)-algebraic set. This means that there exists

a polynomial f;(t;) € K][t;;0,6;] such that f;(¥;) = 0. The existence of
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P-basis in the univariate case is a well-known fact, and hence we can find
{s1,...,8:} C X, that is a P-basis for ¥;. In particular, this subset is (o;, d;)
P-independent. If, for 1 < j <1, a; € ¥ are such that (gj)i = sj, we have
that for any polynomial f from K[t;;0i,6:], f(a;) = f(s;). This quickly
gives the conclusion that the set {a;,...,q,} C ¥ is P-independent. The

fact that the set {a,...,a,} C ¥ is a P-basis is clear since any polynomial
from Klt;; 0,0;] annihilating {s1,...,s,} C %; will also annihilate ¥;, and
hence X. This finishes the proof. O

Of course, the converse of this proposition is untrue, in other words, there
exist subsets > of K™ that are algebraic but none of the 3;, 1 < i < n is
algebraic.

Lemma 4.5. Let ¥ C K™ be a P-independent set. Then, for any1 < i <mn,
the set 3; C K of i-th coordinates of elements of ¥ is P-independent with
respect to (o4, 0;).

We first recall the classical commutative setting of the elementary inter-
polation (so K = k is commutative, 0 = id.,d = 0, and n = 1): for a finite
subset ¥ = {ay,...,q;} C K of distinct points and any set {b1,...,b,} C K,
there exists a monic polynomial p(X) € k[X] such that, for any i =1,...,n,
we have p(a;) = b;. The analogue of the fact that the points are distinct will
be here the fact that the points are P-independent. The case when n = 1
was treated in different papers, refer to [8] and [6] for more information.

Theorem 4.6. Consider two finite subsets ¥ = {a1,...,a;} C K" and
{b1,..., b} C K. Suppose that ¥ is P-independent. Then there exists a
monic polynomial p € R = K|[t1;01,01|[t2; 02,02] - - [tn; on, On] such that
p(ai) = b; for eachi=1,... 1.

Proof. Since ¥ is P-independent, we know that, for any 1 < i < [, there
exists a polynomial p; € R such that p;(a;) = 0 if i # j and p;(q;) # 0. By
scaling we may assume that p;(a;) = 1. The polynomial p = Zizl bip; is
the desired polynomial. ([

5. MULTIVARIATE ORE EXTENSIONS

This short section is concerned with a construction of a noncommuta-
tive polynomial ring that is essentially due to U. Martinez-Penias and F. R.
Kschischang [12]. We slightly extend the context by considering a general
ring for the coefficients. The theory resembles very much the case of one

variable and the introduction of PMT (see below) is, as usual, a useful tool.
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Definition 5.1. Consider a ring A, ti,...,t, are n variables, o : A —
M, (A) a ring homomorphism, and a sequence of n additive maps 01, ..., 0p.
We denote by F' the free monoid generated by the variables {t1,...,t,} and
by S = Alt;o0,0] the set of polynomials of the form Y  _pam,m, where
am € A. On this set, we define the natural addition and we introduce a
multiplication based on the multiplication in F (concatenation) and on the
following commutation rules:

Vi<i<n,Va€A, tia= Za(a)ij(a)tj + di(a).
j=1
For editorial reasons, for a € A, we will write 0;;(a) instead of o(a);j,
viewing o;; as a map from A to A.

Remarks 5.2. (1) The associativity of the ring S leads to the following
rule for the maps d1,...,dy:

Va,b e A, Zam b) + 6;(a)b.

In a compact form, this can be written as §(ab) = o(a)d(b) + d(a)bd.

(2) The fact that o and 0 satisfy the above properties can also be summa-
rized by asking that the map ¢ from A to the matrix ring M,,11(A) defined
by

¢: A— Myyi(A) with a — <o—(0a) 5(5)) 7

is a ring homomorphism.
(3) If V is a left S-module, then V' is also a left A-module and, for any
1 <4 < n, the action of ¢; on V must satisfy the following equality

ti.a.v = ZO‘U a)tj + 0i(a)).v.

This leads to maps T1,...,T), € End(V +) that satisfy
V1<i<n,Ti(awv) ZUW v) + d;(a).v.

In other words, writing T = (T%,T5,...,T,)! for a column of elements in
End(V,+), we can write in a compact form as follows:

T(a.v) =o(a)L(v) + d(a)v.
A sequence of maps satisfying these equations will be called a (o, §)-pseudo-

multilinear transformation ((o,d))-PMT, for short) on V. For example, one

can check that the sequence § = (d1,...,0,) is a PMT on A. What we just
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said is that there is a one-to-one correspondence between left modules over
S and the set of PMTs over left A-modules.
As in the case of a single variable, the following map

¢ : S — End(V,+) such that p(f(¢)) = f(T),

is a ring homomorphism.

(4) We define the evaluation of f(t) € S = A[t;0,0] at (a1,...,a,) € A",
via the representative of f(¢) + I € S/I by an element of A, where I is the
left ideal I = S(t; — a1) + S(t2 — a2) + --- + S(t, — ayn). For example, if
n = 2, then evaluating t1t5 at (a1, az) we get o11(ag)ay + o12(az)as + 1 (az).

Since S/I is a left S-module, it gives rise to a (o,d)-PMT on S/I given
by the actions of ¢; for 1 < i < n. The elements of S/I are represented by
an element of A so that the action of ¢; on S/I can be described by

ti.(w + I) =tixr+1= ZJU@)% + (5Z(x)

The PMT attached to (a1, a2, ...,a,) € A"isTy = (To,, Tay, - - - » Ta, ) where,
for z € A and 1 <i <mn, we have T,,(v) = > 7, 0y5(x)a; + (). As in the
case of a single variable, the link between evaluation and PMT is given by

the formula:
fla) = f(To)(1).

The proof of this formula is easily obtained by first reducing it to monomials
and then proceeding by induction on the length of a monomial. The fact
that the map ¢ in (3) above is a ring homomorphism, then immediately
leads to the product formula (fg)(a) = f(1a)g(a) for f,g € S and a € A.
In particular, if g(t) = « € A, then we have (f.x)(a) = f(7,)(z). This
shows the link between the kernel of f(7,) and the roots of f(t). One
can readily check that T, is a right linear map over the subring given by
C?9(a) := {x € A| Ty(z) = ar}. In the case when A = K is a division ring,
C°%(a) is a division ring isomorphic to Endg(S/I), where I = Y, S(t; — a;).
Some information can be obtained on the roots of a multivariate polynomial
by fixing all the variables but one.

(5) Since the map ¢ associated with a PMT is a ring homomorphism from
S to End(V, +), when ¢ is not injective, the multivariate polynomial ring is
not simple. The simplicity is thus related to some algebraicity of a PMT,
exactly as in the case of a single variable. We will not go deeper into this
subject. MR4394033 (sent May 2022) Kim, Nam Kyun et al., Annihilating
properties of ideals generated by coefficients of polynomials and power series.
Internat. J. Algebra Comput. 32 (2022), no. 2 6) As a final remark let us

mention that, if the division ring K is finite-dimensional over its center F' and
20



o is F-linear, the Skolem Noether theorem shows that o is diagonalizable. In
other words, there exist an invertible matrix U and a set of n automorphisms
of K, say o1,...,0,, such that 0 = Innyodiag(oy,...,0,). In this situation,
the multivariate extension S = K|[t; 0, 0] contains the Ore extensions S; =
K|t;; 04,6;]. In the iterated Ore extension this last fact is always true.
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